Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Integration of Site-Specific Crop Production Practices and Industrial and Animal Agricultural Byproducts to Improve Agricultural Competitiveness and Sustainability

Location: Genetics and Precision Agriculture Research

Project Number: 6064-21610-010-00
Project Type: Appropriated

Start Date: Oct 01, 2013
End Date: Sep 30, 2018

Objective:
Obj 1. Develop ecological and sustainable site-specific agriculture systems, for cotton, corn, wheat, and soybean rotations. 1: Geographical coordinates constitutes necessary and sufficient cornerstone required to define, develop and implement ecological/sustainable agricultural systems. 2: Develop methods of variable-rate manure application based on soil organic matter (SOM), apparent electrical conductivity, elevation, or crop yield maps. 3: Relate SOM, electrical conductivity, and elevation. Obj 2. Develop sustainable and scalable practices for site-specific integration of animal agriculture byproducts to improve food, feed, fiber, and feedstock production systems. 1: Quantify effects of management on sustainability for sweet potato. 2: Balance soil phosphorus (P)/micro–nutrients using broiler litter/flue gas desulfurization (FGD) gypsum. 3: Effects of site-specific broiler litter applications. 4: Manure application/crop management practices in southern U.S. 5: Compare banded/broadcast litter applications in corn. 6: Develop reflectance algorithms for potassium in wheat. 7: Determine swine mortality compost value in small farm vegetable production. Obj 3. Analyze the economics of production practices for site-specific integration of animal agriculture byproducts to identify practices that are economically sustainable, scalable, and that increase competitiveness and profitability of production systems. 1: Evaluate economics of on-farm resource utilization in the south. Obj 4. Determine the environmental effects in soil, water, and air from site-specific integration of animal agricultural and industrial byproducts into production practices to estimate risks and benefits from byproduct nutrients, microbes, and management practices. 1: Quantitatively determine bioaerosol transport. 2: Role of P and nitrogen (N) immobilizing agents in corn production. 3: Assess impact of management on water sources. 4: Impact of FGD gypsum/rainfall on mobilization of organic carbon/veterinary pharmaceutical compounds in runoff/leached water. 5: Assess soil microbial ecology, antibiotic resistance, and pathogen changes using manure and industrial byproducts in crop production systems. 6: Develop nutrient management practices for sustainable crop production. 7: Develop nutrient management practices for reclaimed coal mine soils. 8: Determine effects of poultry litter/swine lagoon effluent in swine mortality composts. 9: Determine survival of fecal bacterial pathogens on contaminated plant tissue. 10: Identify agricultural/industrial byproducts that modify the breakdown of organic matter. Obj 5. Integrate research data into regional and national databases and statistical models to improve competitiveness and sustainability of farming practices. 1: Develop broiler house emission models. 2: Apply quantitative microbial risk assessment models to animal agriculture/anthropogenic activities. Obj 6. Develop statistical approaches to integrate and analyze large and diverse spatial and temporal geo-referenced data sets derived from crop production systems that include ecological and natural resource based inputs. 1: Develop novel methods of imaging processing.

Approach:
Multidisciplinary approaches will be utilized in developing sustainable and competitive agricultural practices for crop management systems. Some approaches will use animal, municipal, and industrial waste as fertilizers and organic soil amendments in crop management systems in precision agriculture ways. Presence, prevalence, and fate of nutrients, gaseous emissions, bacterial approaches, and antibiotic resistance associated with these wastes when applied to soils in cropping systems will be addressed. Work will be done in cooperator animal feeding operations (AFO), farms, and experiment station plots. Off-site transport of nutrients, pathogens, and antibiotic resistant bacteria will be determined. Statistical models will be developed for geo-referenced measurements of farming practices and improvements to mixed model analysis methodology will be developed. Remotely sensed data will be combined with on-site field measurements to develop site-specific prescriptions for application of crop management inputs. Information will be developed into best management practices to protect the environment and human and animal health by maximizing crop nutrient utilization, minimizing bacterial contamination and antibiotic resistance, and reducing ammonia and greenhouse gas emissions. Agricultural models will be used to predict sustainability and competitiveness of management practices developed and implemented into best management practice recommendations.

Last Modified: 10/21/2014
Footer Content Back to Top of Page