Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Understanding and Mitigating the Adverse Effects of Poisonous Plants on Livestock Production Systems

Location: Poisonous Plant Research

Project Number: 5428-32630-012-00
Project Type: Appropriated

Start Date: Feb 11, 2013
End Date: Feb 10, 2018

Objective:
Objective 1: Develop and implement novel management protocols for establishing improved forage species on sites infested with known poisonous plants to reduce the risk of livestock mortality and morbidity, improve livestock performance, and improve rangeland resiliency and diversity. Specifically, develop science-based guidelines for grazing livestock on rangelands infested with Lupinus, Senecio, Delphinium and swainsonine and selenium-containing plants. Objective 2: Reduce the risks of livestock losses due to variations in quantitative and qualitative differences in toxin accumulation over time and plant species by quantifying the influence of endophytes, climate changes, and genotype on plant toxin accumulation (particularly swainsonine-containing plants and Delphinium and Lupinus species). Objective 3: Enhance feed and food safety by improving risk assessment and diagnosis of plant-induced poisoning to livestock by improving analytical methods for analyzing plant and animal tissues for toxins; measuring toxicokinetics, assessing carcinogenic and genotoxic potential, and identifying toxin metabolites and biomarkers of toxicoses. Objective 4: Develop improved procedures with guidelines for diagnostic and prognostic evaluation to reduce negative impacts of poisonous plants on livestock reproduction and embryo/fetal growth by improving early identification of poisoned animals, predicting poisoning outcomes, and management and treatment options through improved understanding of clinical, morphological and molecular alterations of plant-induced toxicosis. Objective 5: Develop guidelines to aid producers and land managers in making genetic-based herd management decisions to improve livestock performance and safety on grazed rangelands infested with poisonous plants through the use of identified animal genes, physiological pathways, and molecular mechanisms of action that underlie Conium, Cicuta, Delphinium, Lupinus, and Nicotiana, and other neurotoxic plant effects.

Approach:
Livestock poisoning by plants results in over $503,000,000 lost to the livestock industry annually in the 17 western United States from death losses and abortions alone (Holechek, 2002). Plant poisonings extend worldwide to include 333 million poisonous plant-infested hectares in China and 60 million hectares in the central western region of Brazil, to name a few. There are over 6,000 species of pyrrolizidine alkaloid (PA)-containing plants, and over 350 individual PAs causing diseases in animals and humans have been identified. Economic losses are much larger as significant amounts of nutritious forage are wasted and management costs are increased due to the threat of toxic plant-related livestock losses. The Poisonous Plant Research Laboratory (PPRL) has provided worldwide leadership in poisonous plant research to the livestock industry and consumers including numerous solutions to toxic plant problems using an integrated, interdisciplinary approach (see Figure below). The research team investigates plant poisonings in a systematic matter by identifying the plant, describing the effects in animals, determining the toxin(s) and evaluating the mechanisms of action. The ultimate goal is to develop research-based solutions to reduce livestock losses from toxic plants. There are five coordinated objectives in this project plan providing guidelines for potential genetic-based management. This research will reduce livestock losses from plants and enhance the economic well-being of rural communities, improve rangeland health by combating invasive plant species, and help to provide safe animal products free from potential plant toxins for consumers.

Last Modified: 8/21/2014
Footer Content Back to Top of Page