Page Banner

United States Department of Agriculture

Agricultural Research Service

Related Topics

Research Project: Innovative Pathogen Detection and Characterization Technologies for Use in Food Safety

Location: Molecular Characterization of Foodborne Pathogens

Project Number: 8072-42000-077-02
Project Type: General Cooperative Agreement

Start Date: Jun 01, 2012
End Date: Sep 30, 2016

1: Develop and integrate operational technologies to rapidly and effectively concentrate viable target cells from food matrices in a self-validating system into an automated instrument. 1A: Integrate technology platforms that we have developed and individually tested into a usable technology for detecting L. monocytogenes in less than 8 h (time-to-result). 1B: Integrate technology platforms, currently being developed in our laboratory, into a usable technology for detecting Salmonella . 1C: Integrate technology platforms into a usable technology for detecting STEC. 2: Develop, evaluate, and adopt novel technologies for rapid detection, identification, and quantification of viable and non-viable target microorganisms. Research areas to be addressed include microfluidic biochips, optical light scattering technology, bacteriophage sensors, and Raman spectroscopy. 2A: Microfabricate and characterize microfluidic biochips that will direct, concentrate, and quantify living microorganisms using micro- and nano-scale electrical, mechanical, and optical methodologies. 2B: Develop light scattering technologies for rapid and high throughput detection and identification of pathogenic bacteria based on unique scattering signatures generated by concentrated colonies. 2C: Develop bacteriophages carrying reporter genes for the detection of E. coli O157:H7 and other foodborne pathogenic bacteria. 2D: Develop a highly sensitive enhanced Raman spectrosensor for field-deployable and routine benchtop in-lab identification of foodborne pathogens.

The approach focuses on four main components including separation, detection, identification, and quantification of target microorganisms from food matrices.

Last Modified: 8/25/2016
Footer Content Back to Top of Page