Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Delivery of the Oms-Based Ages-W Resource Concerns Assessment Model for Evaluating Water/nutrient Management and Conservation Effects

Location: Agricultural Systems Research Unit

Project Number: 5402-13660-008-02
Project Type: Specific Cooperative Agreement

Start Date: Sep 15, 2011
End Date: Sep 14, 2014

Objective:
(1) Maintain and enhance the Object Modeling System (OMS) by (a) improving the development and debugging capabilities of OMS for Fortran 95 and mixed Fortran 95/Java/C++; (b) improving the annotation and connectivity capabilities of OMS for Fortran 95 and mixed Fortran 95/Java/C++; (c) developing and evaluating OMS/cloud-based data provisioning capabilities for soil, land use/cover, and DEM data and linkage to AgroEcoSystem-Watershed (AgES-W) model input files; and (d) deploying AgES-W to a cloud infrastructure to enable scalable applications for large data sets. (2) Maintain and enhance a library of Fortran 95 and Java modules for continued development of the AgES-W watershed scale model. (3) Continue implementation of tools in OMS for land unit delineation, parameterization/calibration, sensitivity/uncertainty analysis, and spatial-temporal output visualization.

Approach:
The Object Modeling System (OMS) currently has essential core modules (taken from the SWAT, WEPP, RZWQM2, and the European J2K and J2K-S models) used for building and deploying the AgES-W watershed model. These core OMS-based modules will be further verified and new modules added (e.g., infiltration, tile drainage, and crop growth) to further improve AGES-W. OMS functionalities for model debugging, module connectivity, data provisioning, and cloud computing will be augmented as needed during this process. ARS scientists will evaluate the AgES-W model with experimental data from two to three Colorado and Midwest watersheds for water quantity and quality outcomes of land management and conservation practices. Based on the evaluation, the component modules will be upgraded or replaced with new improved modules. To facilitate the application of the improved AgES-W model, functionalities will be developed in OMS to access appropriate NRCS databases. Additional tools developed by ARS scientists for land unit delineation, parameterization, sensitivity/uncertainty analysis, output visualization, and scaling will also be fully implemented. The final package will be delivered to NRCS and ARS modelers for further evaluation and feedback for improvements.

Last Modified: 4/19/2014
Footer Content Back to Top of Page