Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: BIOLOGICAL, BEHAVIORAL, AND PHYSICAL CONTROL AS ALTERNATIVES FOR STORED PRODUCT AND QUARANTINE PESTS OF FRESH/DRIED FRUITS AND NUTS

Location: Commodity Protection and Quality

Project Number: 5302-43000-034-00
Project Type: Appropriated

Start Date: May 10, 2008
End Date: May 09, 2013

Objective:
The overall objective is to develop practical and economical non-chemical insect control and disinfestation treatments that are safe and environmentally acceptable to replace methyl bromide for fresh and durable commodities. Objective 1: Develop a biologically-based management program using biological agents and cultural controls. • Sub-objective 1.A. Develop a biological control program for olive fruit fly using imported parasitoids • Sub-objective 1.B. Develop cultural control methods for olive fruit fly • Sub-objective 1.C. Develop a laboratory diet for olive fruit fly • Sub-objective 1.D. Improve control of navel orangeworm in orchards by using entomopathogenic nematodes that target over-wintering larvae • Sub-objective 1.E. Develop information for obtaining approval to release insect parasitoids into bulk-stored dried fruits and nuts. • Sub-objective 1.F. Determine the potential of commercially available or novel pathogens to control stored product Coleoptera. Objective 2: Develop a sex pheromone based program for use in the integrated management of navel orangeworm. • Sub-objective 2.A. Develop a stable formulation for the recently identified female sex pheromone • Sub-objective 2.B. Develop trapping data to calculate realistic navel orangeworm numbers based on standard sticky trap catch data. • Sub-objective 2.C. Determine the size of mating disruption treatment block necessary for reduction of navel orangeworm damage in almonds • Sub-objective 2.D. Determine fitness of females and potential impact of mating disruption at times of first and second flight. Objective 3: Develop alternative physical treatments for dried fruits, nuts, and fresh fruits • Sub-objective 3.A. Determine whether forced hot air combined with controlled atmospheres (CATTS) for stone fruit or forced hot air for oranges are viable quarantine treatments. • Sub-objective 3.B. Develop and field test low and high temperature treatments for dried fruit and nut insect pests. • Sub-objective 3.C. Develop and field test vacuum treatments using low cost, flexible storage containers for dried fruit and nut insect pests.

Approach:
Postharvest insects cause significant economic loss to the agricultural sector, both through direct damage by feeding or product contamination, and by the cost of control programs. The export trade of certain horticultural products may be affected as well, with importing countries requiring quarantine treatments to prevent the introduction of exotic pests. Of particular concern to agriculture in the Western U.S. are field pests such as the olive fruit fly (Bactrocera oleae), navel orangeworm (Amyelois transitella), and codling moth (Cydia pomonella), and storage pests such as the Indianmeal moth (Plodia interpunctella). Processors rely largely on chemical fumigants such as methyl bromide for insect disinfestation, but regulatory, environmental and safety concerns mandate the development of non-chemical alternatives. In addition, with the elimination of methyl bromide as a fumigant because of its ozone depletion, the development of alternatives is an immediate concern. This project addresses this problem with a broad collaborative approach, examining both preharvest, biologically based control strategies as well as physical postharvest disinfestation treatments. Areas of investigation will include the development of biological and cultural control practices for olive fruit fly, improved field control of navel orangeworm with mating disruption and entomopathogenic nematodes, improved sex pheromone of navel orangeworm, new microbial controls for stored product beetles, commercial-scale forced hot air control atmosphere treatment for stone fruits, volatile markers to identify suitable hot forced air treatments for citrus, and radio frequency heating, low temperature storage, vacuum treatments, and parasitoid releases for control of postharvest dried fruit and nut insects. New, non-chemical methods for control of these economically important pests will be the outcome of this research. Formerly 5302-43000-031-00D (03/08).

Last Modified: 7/25/2014
Footer Content Back to Top of Page