Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Molecular Analysis of Proteins Involved in Wheat Flour Quality and Allergenic Potential in Response to Environmental and Nutritional Stress

Location: Crop Improvement and Genetics Research

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)

Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour - (Peer Reviewed Journal)
Altenbach, S.B., Tanaka, C.K., Seabourn, B.W. 2014. Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour. Biomed Central (BMC) Plant Biology. 14:1.
Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response - (Peer Reviewed Journal)
Moeller, S., Tanaka, C.K., Green, P.H., Zone, J.J., Vensel, W.H., Kasarda, D.D., Briani, C., Altenbach, S.B., Alaedini, A. 2014. Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response. Journal of Proteome Research. 14:503-511.
An asparagines residue at the N-terminus affects the maturation process of low molecular weight glutenin subunits of wheat endosperm - (Peer Reviewed Journal)
Egidi, E., Sestili, F., Janni, M., D'Ovidio, R., Ceriotti, A., Vensel, W.H., Kasarda, D.D., Masci, S. 2014. An asparagines residue at the N-terminus affects the maturation process of low molecular weight glutenin subunits of wheat endosperm. Biomed Central (BMC) Plant Biology. 14:64. DOI: 10.1186/1471-2229-14-64.
Thioredoxin-linked redox control of metabolism in Methanocaldococcus jannaschii, an evolutionarily deeply-rooted hyperthermophilic methanogenic archaeon     Reprint Icon - (Peer Reviewed Journal)
Susanti, D., Wong, J.H., Vensel, W.H., Loganathan, U., Desantis, R., Schmitz, R., Balaera, M., Buchanan, B.B., Mukhopadhyay, B. 2014. Thioredoxin-linked redox control of metabolism in Methanocaldococcus jannaschii, an evolutionarily deeply-rooted hyperthermophilic methanogenic archaeon. Proceedings of the National Academy of Sciences. 111(7):2608-2613. DOI:10.1073/pnas.1324240111.
Last Modified: 7/1/2015
Footer Content Back to Top of Page