Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Amylose Helical Inclusion Complexes for Food and Industrial Applications

Location: Functional Foods Research Unit

Project Number: 3620-41000-152-00
Project Type: Appropriated

Start Date: Dec 13, 2010
End Date: Dec 12, 2015

Objective:
The overall project goal is to develop new technologies for producing amylose helical inclusion complexes on a large scale that provide new biobased applications to replace existing petrochemical-derived products, covalently modified starches, and natural gums using energy-efficient, green manufacturing techniques. Helical inclusion complexes of amylose and various ligands have been described in the literature, but they are typically produced in small quantities using various solvents and alkaline solutions. The goal of this project is to characterize thermomechanically-produced amylose helical inclusion complexes and investigate commercial applications based on their chemical and physical properties. Specific objectives are: Objective 1. Develop biobased, environmentally friendly technology for producing amylose helical inclusion complexes with anionic ligands which are functional in applications such as water-dispersible surfactants and lubricants. Objective 2. Develop biobased, environmentally friendly technology for producing amylose helical inclusion complexes with cationic ligands which are functional in applications such as papermaking retention aids and flocculating agents. Objective 3. Develop biobased, environmentally friendly technology for producing amylose helical inclusion complexes and spherulites with uncharged ligands which are functional in applications such as controlled-release agents, microbial production substrates and dispersants.

Approach:
Steam jet cooking technology will be investigated as an efficient method for producing amylose helical inclusion complexes with functional properties relevant to a wide range of food and industrial applications. Whereas many types of such complexes have been prepared in small quantities under laboratory conditions, this research will focus on developing thermomechanical production methods using only starch, water, and specific ligands of interest to form complexes that can be used for applications currently employing covalently modified starches, expensive natural gums, and other materials. Preliminary experiments with high amylose starch and sodium palmitate have demonstrated that amylose inclusion complexes could be readily formed in high yields in jet cooked starch dispersions. A series of anionic, cationic, and uncharged ligands will be investigated in terms of ability to form complexes thermomechanically with various commodity starches such as normal dent, high amylose, and waxy cornstarch, and their morphological, chemical, and physical properties will be determined. Specific ligands will be chosen for particular end-use applications, including surfactants, lubricants, papermaking retention aids, flocculating agents, and controlled release agents for food and non-food products. The complexes possessing crystalline spherulite morphology will be investigated as solid supports for the growth of microbes in liquid culture and as a dispersal medium for microbial products. For each application, the best ligands will be selected from available candidates, sufficient quantities of amylose inclusion complexes will be prepared using steam jet cooking methods, and laboratory tests will be performed to determine the performance of the complexes for the specific end use. As the efficacy of these products are successfully demonstrated, prototype products will be prepared and collaboration with the private sector will be sought for transfer of the technology to the private sector for field testing and market development.

Last Modified: 8/22/2014
Footer Content Back to Top of Page