Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: INNOVATIVE ANIMAL MANURE TREATMENT TECHNOLOGIES FOR ENHANCED ENVIRONMENTAL QUALITY

Location: Coastal Plain Soil, Water and Plant Conservation Research

2011 Annual Report


1a.Objectives (from AD-416)
Develop and evaluate environmentally superior technologies to prevent off-farm release of nutrients and to reduce pathogens, odors, and ammonia emissions. Develop information and technologies to enhance or retrofit existing manure treatment systems to help producers meet environmental criteria (nutrients, emissions, and pathogens). Improve and refine constructed natural treatment technologies to effectively manage nutrients including reducing emissions of ammonia and nitrous oxide. Develop and evaluate new and improved technologies that concentrate/sequester nutrients from manures or create value added products including conversion of livestock waste to energy. Evaluate swine wastewater treatment systems that can be used to reduce emissions, manage nutrients, and control pathogens on small farms. Develop cooperative activities as needed to conduct the research.


1b.Approach (from AD-416)
This research will take a synergistic approach towards developing more effective animal waste treatment practices and holistic systems to solve these problems. Four complementary approaches will be pursued. First, environmentally superior technologies and combination of technologies will be developed and evaluated to prevent off-farm release of nutrients and to reduce pathogens, odors, and ammonia emissions. These technologies include improved solid-liquid separation, phosphorus extraction, enhanced biological nitrogen treatment, anaerobic ammonia oxidation, litter wash, material science and green oxidant application development, and their integration into systems of treatment technologies. Second, investigations will be conducted to further our limited knowledge on biology of anaerobic lagoons and develop technologies that can be used to retrofit existing manure treatment systems. To accomplish this, we will use state-of-the-art tools such as non-invasive estimation of oxygen absorption, enzyme activities, emission quantification with open-path laser ammonia detector, and we will develop an improved bio-filtration method to clean barn air. Third, research will be conducted to enhance constructed natural treatment technologies such as constructed wetlands, floating wetlands and riparian zones to more effectively manage nutrients using passive systems. Fourth, we will develop guidelines, protocols and standards for the beneficial use of manure by-products. These include improved methods to recycle and recover nutrients from anaerobic lagoon sludge and to produce hydrogen from livestock manure. Results from this project will advance the state of science for more effective animal waste treatment and implementation of environmentally-safe alternatives to traditional land application. Systems of treatment technologies that capture nutrients, reduce emissions, and kill pathogens need to be developed and evaluated. Small farms will require systems that meet environmental regulations and have a reasonable initial cost.


3.Progress Report
This report covers the bridging project between project 6657-13630-003-00D under National Program 206 (term date 04/02/2010) and the new approved project 6657-13630-005-00D under National Program 214 (start date 10/01/2010).

Three journal articles were published:.
1)a comparative review of the chemistry, processes and applications of wet and dry pyrolysis for hydrothermal carbonization of biomass residuals;.
2)a review article on current uses and management of poultry litter; and.
3)research results of nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons.


Review Publications
Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M., Fuhner, C., Bens, O., Kern, J., Emmerich, K. 2011. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2:71-106.

Bolan, N.S., Szogi, A.A., Chuasavathi, T., Seshadri, B., Rothrock Jr, M.J., Panneerselvam, P. 2010. Uses and management of poultry litter. World's Poultry Science Journal. 66:673-698.

Ducey, T.F., Shriner, A.D., Hunt, P.G. 2011. Nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons. Journal of Environmental Quality. 40:610-619.

Last Modified: 7/25/2014
Footer Content Back to Top of Page