Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Sustainable Strategies to Lower the Environmental and Economic Impacts of Food Processing Using Fluid Milk As a Template

Location: Dairy and Functional Foods

Project Number: 8072-41000-087-00
Project Type: Appropriated

Start Date: May 24, 2010
End Date: May 23, 2015

Develop simulation models that quantify the effects of process modifications on energy use, economics and greenhouse gas emission data for fluid milk processing plants. Evaluate the impact of high temperature short time(HTST) and ultrahigh temperature (UHT) processing on the physical and/or chemical properties of milk proteins and minerals on the molecular level, and explore the implications of processing technologies on the bioactivity and bioavailability of key dairy ingredients. Evaluate milk-based films and coatings as a means to reduce and/or improve packaging associated with food processing.

Research will be conducted to develop mathematical models that will be used to quantify the effects of various processing operations and parameters on energy use, economics, waste streams and greenhouse gas (GHG) emissions of fluid milk and other dairy and food processing plants. The models will be used in a simulation program that will also allow the examination of the impact of alternative processing techniques or alternative energy management systems on energy use, economics, waste streams and GHG emissions of processing plants and the nutrition of the products. The impact of high temperature short time (HTST), ultrahigh temperature processing (UHT), and alternative processing on some of the properties of the milk proteins and minerals on the molecular level will be evaluated using techniques that include HPLC, enzymatic digestions, and spectroscopic, microscopic and proteomics techniques. The bioactivity and bioavailability of a key dairy protein – mineral peptide will be evaluated using in vitro digestion simulation followed by analytical study. The mechanical and barrier properties of edible films and coatings as a function of technique of calcium caseinate and CO2-casein film preparation will be explored under a variety of humidity and temperature conditions to determine their application limits and potential to replace petrochemical films. Microscopy will be used to examine changes in protein conformation with environmental changes. Additional properties using ASTM techniques will also be determined.

Last Modified: 4/22/2015
Footer Content Back to Top of Page