Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: ECOPHYSIOLOGICAL, BIOCHEMICAL, AND MOLECULAR MECHANISMS OF DESICCATION TOLERANCE IN THE FERNS

Location: Plant Genetics Research

2012 Annual Report


1a.Objectives (from AD-416):
Elucidate the mechanism of dehydration tolerance in a model plant (fern) that differs in the level of tolerance between different life stages. The objective is to profile genes that respond to dehydration and rehydration and the degree of their expresssion, and to employ molecular phylogenomics to understand better how molecular mechanisms are related across green plants.


1b.Approach (from AD-416):
This work will examine species from three different habitats in Costa Rica: tropical dry forest, tropical lowland rain forest, and tropical high elevation paramo. Each site will be assessed and monitored for microclimate characteristics. Initial ecophysiological surveys of dessication tolerance (DT) will be made on field collected samples in Costa Rica. Others will be brought back to the US for detailed DT studies. At least for species from each habitat will be grown under controlled conditions. The DT capabilities for gametophytes and sporophytes for each species will be determined experimentally using controlled drying regimes coupled with survival assays and cell leakage measurements. The effect of dehyration on various physiological parameters (photosynthesis, respiration, water relations) will be assessed. Mechanisms of tolerance will be assessed by following the behavior of key cellular components during a wet-drywet cycle: including dehydrins (stress proteins), carbohydrates and key antioxidants. Dehydrins are of particular interest, as we will look at the gene structure, expression and protein accumulation patterns for each species. These measurements will form the basis of our molecular phylogenomics investigations.


3.Progress Report:

This project is associated with Objective 2: Develop strategies and mechanisms for improving drought-stress tolerance of maize, and is a collaborative effort between ARS and Colgate University and funded through the Harvey Picker Institute for Disciplinary Studies in the Sciences and Mathematics. The primary objective of the project, for ARS, is to uncover the mechanisms by which different life stages of ferns survive desiccation. The ARS approach is to look at key genetic components of desiccation tolerance and to determine their regulation during dehydration under controlled drying conditions. Initial studies focused on isolating and characterizing dehydrin protein expression, both at the transcriptional and translational levels, in a number of fern subjected to dehydration. After much work we focused our attention to the fern, Lomariopsis vestita, as it exhibits a unique expression of desiccation tolerance, going from tolerant to sensitive, as it transitions from an epiphytic to a terrestrial growth pattern. We previously explored the use of dehydrins as a marker of tolerance in these ferns and it has proven to be unsatisfactory on many levels. We moved to a different marker, the Early Light Inducible Protein (ELIP) gene family, and have cloned a gene that produces a dehydration inducible transcript. We completed a preliminary transcriptome analysis of the leaves of this fern. We initiated an assay of the expression of this gene, along with others involved in photosynthesis through drying rehydration cycles in Lomariopsis vestita. The progress made was exactly as outlined in the project for the ARS portion and made significant inroads into understanding how desiccation tolerance is regulated in plants. These studies will ultimately identify the regulation and genetic components of the complex phenotype of drought tolerance and its improvement in crops.


Last Modified: 7/24/2014
Footer Content Back to Top of Page