Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Vegetable Oil-Based Fuels, Additives and Coproducts

Location: Bio-oils Research Unit

Project Number: 3620-41000-148-00
Project Type: Appropriated

Start Date: Sep 19, 2009
End Date: Sep 18, 2014

Objective:
Improve the fuel properties and performance of vegetable oils and their derivatives as alternative fuels, extenders, and additives in the operation of compression-ignition (diesel) engines for on-road and off-road applications. Address technical problems identified by stakeholders and customers. Specific objectives for this project are: 1) Enable new commercially-viable alternative fuel formulations with improved cold weather start-up and operability performance without compromising fuel quality as defined by appropriate standard fuel specifications; 2) Enable new commercially-viable biodiesel formulations with improved storage stability with respect to oxidative degradation. Develop rapid measurement methods for monitoring effects of degradation on biodiesel fuel quality during storage, as defined by appropriate standard fuel specifications; 3) Enable new, commercially-viable biodiesel fuels derived from novel oilseed crops (especially inedible plant species), vegetable oils with modified fatty ester composition, and non-traditional feedstocks such as algae and biomass; 4) Enable new, commercially-viable analytical methods for biodiesel and its minor constituents and other fuel quality issues to enhance market acceptance of biodiesel fuels; and 5) Develop technologies that expand the markets for glycerol by enabling the commercial conversion of glycerol and its derivatives to chemicals and components in products such as surfactants, emulsifiers, fuel additives, dispersants and/or flocculating agents as well as biodegradable polymer products such as polyesters, polyethers and polyurethanes.

Approach:
Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, used oils or algae and other biomass feedstocks. While it is competitive with (in some aspects even technically superior to) petroleum-derived diesel fuel, its use is still affected by technical and supply issues that hinder more widespread commercialization. This project proposes to improve the fuel properties of vegetable oils as well as other feedstocks and their derivatives as alternative diesel fuels, extenders, and additives in the operation of compression-ignition (diesel) engines for on-road and off-road applications. Specific objectives for this project include: 1) Improve cold weather start-up and operability; 2) Enhance understanding of oxidative stability and provide methods for its improvement; 3) Provide novel fuel formulations, including alternative and conventional feedstocks with different fatty acid profiles as well as novel additives; 4) Develop analytical methods for minor constituents of biodiesel and other fuel quality issues and 5) Development of specialty chemicals and products such as biodegradable polymers from biodiesel co-products (glycerol). Overall, this research will lead to technically improved biodiesel fuels that are more competitive in the marketplace, enhanced analyses, and new, economically competitive and environmentally friendly products from glycerol.

Last Modified: 10/1/2014
Footer Content Back to Top of Page