Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: OAT QUALITY IMPROVEMENT Project Number: 5442-21440-005-00
Project Type: Appropriated

Start Date: Jul 02, 2009
End Date: Jun 09, 2010

To contribute to the improvement of oat quality by characterizing panicle and kernel structure characteristics associated with environmental stability of high test weight, by determining kernel structure characteristics associated with improved milling yield, and by the characterization of genotypic and environmental effects on the chemical composition of polar lipids in oat groats.

In order to determine panicle and kernel structure effects on environmental stability of test weight, fifty advanced lines of oats will be selected from an oat breeding program in North Dakota. Selected lines will have high potential for high test weight and will be highly variable for panicle size. Lines will be grown in four diverse environments and intact panicles will be harvested. Panicle and kernel size and structure will be analyzed along with test weight to determine physical characteristics that provide high test weight even in harsh environments that adversely affect yield. Kernel structure associated with improved milling yield will be determined by dehulling different genotypes of oats with an impact dehuller, similar to dehullers used by industry. Every oats sample will be fractionated by kernel size by three different mechanisms that divide according to different size characteristics. Slotted sieves will separate according to kernel width, disc separators will separate according to kernel length, and a gravity table will separate according to kernel density. Each size fraction will be dehulled at a series of dehuller rotor speeds, so that the influence of different kernel size characteristics on dehulling efficiency and milling yield can be determined. Finally, oat polar lipids will be characterized from a variety of oat cultivars grown in diverse environments. Polar oat lipids will be extracted and analyzed for their chemical composition by chloroform/methanol/water extraction, separation by silica gel chromatography, and analyzed by high pressure liquid chromatography using an evaporative light scattering detector.

Last Modified: 5/22/2015
Footer Content Back to Top of Page