Page Banner

United States Department of Agriculture

Agricultural Research Service

Related Topics

Research Project: IDENTIFY METABOLITE BIOMARKERS OF MUSCLE FAT COMBUSTION

Location: Obesity and Metabolism Research Unit

2009 Annual Report


1a.Objectives (from AD-416)
Elevated fat levels within skeletal muscle cells (intramyocellular lipids) are highly correlated with muscle and whole-body insulin resistance, and more prevalent in obesity. The molecular links and metabolic shifts driving this association remain open to debate, but notably, reduced muscle mitochondrial fatty acid (FA) beta-oxidation is more prevalent among insulin-resistant/diabetic persons. Therefore, discovery of biomarkers reflective of the status of an individual’s muscle FA beta-oxidation activity or capacity would have tremendous prognostic and diagnostic value in terms of diabetes. Furthermore, characterization of metabolites associated with muscle mitochondrial fat metabolism should uncover candidate signaling factors which tie FA ß-oxidation to insulin signaling. We propose to identify, for the first time, specific biomarkers of muscle FA beta-oxidation using multiple metabolomic analytical platforms to compare metabolite profiles in samples derived from biological systems displaying disparate muscle fat combustion, including: isolated mitochondrial organelles and muscle cells catabolizing FA at different rates, a UCP3 transgenic animal model, and human subjects harboring a UCP3 truncation polymorphism. Pilot validation studies will test whether plasma metabolites and/or metabolite signatures identified in cell, animal, and human studies that track muscular FA beta-oxidation can be experimentally increased in obese, insulin-resistant subjects via a diet-exercise regimen designed to improve muscle fitness and FA combustion.


1b.Approach (from AD-416)
A comprehensive analytical chemistry assay measuring >400 metabolites will be employed to test samples derived from the following project aims:

Aim 1--Identify Metabolite Biomarkers of Muscle Fat Combustion in Organelle, Cell, and Animal Models Displaying Significantly Altered Fatty Acid beta-Oxidation. We will determine how metabolite profiles shift in models displaying increased muscle beta-oxidation (uncoupling protein 3-overexpressing muscle cell line and muscle UCP3-transgenic mice), and hypothesize that profiles in UCP3-overexpressing systems will reflect increased FA beta-oxidation. Complementary studies will identify tissue-specific metabolites generated by mitochondria in the course of palmitate catabolism in vitro, comparing muscle to liver and kidney preparations. Aim 2--Identify Metabolite Biomarkers of Muscle Fat Combustion in Humans Harboring a UCP3 Missense Polymorphic Allele. We predict that subjects with this polymorphism (that yields a truncated UCP3 and 50% decreased whole-body fat combustion) will display a distinctive plasma metabolite profile indicative of reduced muscle FA oxidation, when compared to subjects without the polymorphism. Aim 3--Determine Whether Metabolomic Profiles Reflective of Muscle Fat Combustion Predict Metabolic Health Changes Following Diet & Exercise Intervention in Obese Subjects. We hypothesize that biomarkers reflective of normal to increased muscle beta-oxidation will be increased, and markers indicative of poor muscle fat combustion reduced, in a cohort of sedentary obese subjects undergoing a 4 month diet-exercise protocol which will increase muscle fitness and improve insulin action. Documents ACTA with UC Davis.


3.Progress Report

Significant progress has been made toward several of the objectives in this project, which examines broad metabolite patterns reflective of metabolic status in muscle in order to identify biomarkers of muscle fat combustion. This overarching aim is driven by the fact that poor insulin sensitivity and frank type 2 diabetes typically occur in the setting of reduced or inefficient muscle long chain fatty acid (LCFA) catabolism in mitochondria. Working with collaborators at UC Davis and at the University of Ottawa, studies have been completed to determine unique metabolites effluxed from and changing within mitochondrial during active LCFA combustion. Those studies are under consideration at a peer-reviewed journal. Finally, recently the concentration of >200 metabolites including amino acids, carbohydrate-metabolites, purines, and some lipids was determined in the blood of type 2 diabetics and non-diabetics harboring genetic mutations that disrupts muscle fat metabolism. These results are still under interpretive review, but the data show novel metabolite patterns indicative of diabetes and also the mutation itself. The results will be presented at the fall annual meeting of the Obesity Society. The ADODR monitors the annual financial report from cooperating institutions, and conducts in-person or teleconference discussion sessions relating to the project.


Last Modified: 7/24/2014
Footer Content Back to Top of Page