Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: SUSTAINABLE CROPPING SYSTEMS FOR IRRIGATED SPECIALTY CROPS AND BIOFUELS Project Number: 5354-21660-002-00
Project Type: Appropriated

Start Date: Sep 12, 2008
End Date: Sep 11, 2013

Objective:
Objective 1: Identify optimal strategies for incorporating bioenergy crops into irrigated Pacific Northwest Region cropping systems. • Sub-objective 1.A. Evaluate the impacts of harvest of C3 and C4 grass perennial biomass crops and the removal of crop residues on carbon sequestration, nutrient dynamics, and soil quality in irrigated Pacific Northwest crop rotations. • Sub-objective 1.B. Determine the efficacy of co-products from agricultural-based energy production on weed and disease control and soil fertility improvement in irrigated crop production systems. Objective 2. Identify optimal combinations of management practices to lower total production costs while maintaining market quality of irrigated potato-based production systems. • Sub-objective 2.A. Determine the impact of reduced tillage on soil conservation/erosion soil physical properties, the mechanisms controlling carbon and nitrogen cycling, and trace gas (CO2, N2O, CH4) fluxes and C sequestration and the yield and quality response of potato and rotational crops. • Sub-objective 2.B. Evaluate the effects of deficit irrigation practices on potato yield and tuber quality. • Sub-objective 2.C. Validate the ARS Potato Growth Simulation Model for the irrigated inland Pacific Northwest region. Objective 3. Develop ecologically-based management strategies that enhance vegetable yields and soil quality in irrigated organic production systems. • Sub-objective 3.A. Quantify key soil agroecological processes (carbon and nitrogen cycling) and application rates of organic amendments that optimize physiological development (nitrogen capture, plant growth rate) of potato under irrigated organic cropping systems. • Sub-objective 3.B. Integrate hybrids with weed suppressive traits into organic specialty crop production systems.

Approach:
Long-term sustainability of potato production in the Pacific Northwest will depend not only on balancing the physiological production requirements, but also overcoming additional constraints to system productivity and profitability. Assessing sustainability and the basic interactions among system components are multifaceted tasks that require long-term studies integrating a multidisciplinary approach to understand system constraints and also provide data needed to support evaluation of impacts of specialty crops by system modelers. Improved cropping systems will be developed that reduce erosion, reclaim excess N, build organic matter, and suppress pests and improve soil and environmental quality and economic viability. Application of conservation tillage to specialty cropping systems will be investigated to evaluate improving environmental, biological and economic sustainability. With the expansion of the bioenergy industry in the U.S. and state and regional mandates for biofuel blending have made biofuels a high priority issue for the USDA. The expansion of the biofuel industry on potato and other specialty crop production will be investigated. The projected growth of the ethanol and biodiesel industries in the PNW will produce large quantities of organic-based co-products. These co-products are much greater than what can be utilized locally as a source of animal feed, so alternative value added uses will be investigated. The use of these co-products could be used to offset the high costs of nutritional and pest control requirements of potato and specialty crops. The demand for organic produce continues to expand and is of increasing interest to PNW growers. Managing weeds and providing adequate nutrients are the two major production issues for organic producers. Economical and environmentally friendly solutions are needed for organic producers to increase production efficiency by management of weeds and nutrients. Formerly 5354-21660-001-00D (8.08).

Last Modified: 10/20/2014
Footer Content Back to Top of Page