Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Improved Production Methods: North South Initiative (Michigan State University)

Location: Application Technology Research Unit

Project Number: 5082-21000-015-22
Project Type: Specific Cooperative Agreement

Start Date: Sep 16, 2008
End Date: Sep 15, 2013

Objective:
The objective of this unified research effort is to improve the efficiency of plant production through a multi-disciplinary team approach that focuses on scheduling, the environment, energy, nutrient, water, and chemical growth regulator resources.

Approach:
Develop protocols to flower plants at a specified plant size for the retail environment, and extending the marketing season by producing early- or late-flowering plants for different locations in the U.S. A single product or tank mix growth retardant applications for new crops that reduce elongation most without delaying flowering and whether innovative practices such as rewetting of foliage increases efficiency of growth regulators. Identify the crops and stages of development in which lighting is most effective. In addition, photoperiodic lighting is increasingly being used to induce earlier flowering during the winter and spring. Determine how photoperiodic lighting can be maximized by investigating how light quantity, quality, and duration (including cyclic lighting) impact flowering of a range of popular garden plants. Potential energy savings will be quantified by optimizing light and temperature to produce crops in the most efficient and cost-effective manner for different locations in the U.S. Develop tools and techniques that allow growers to more precisely control and manipulate flowering of greenhouse crops. Techniques will be developed for producing 'programmed' liners that have the branching, height potential, and flower bud development necessary so that the liner can be simply transplanted and quickly finished. "Bud meters" will be developed for important floriculture crops so that growers can manage greenhouse environments in order to properly time flowering on finished crops or to possibly reduce greenhouse temperatures to save fuel costs while still hitting the targeted market dates. Determine optimal fertilization rates and tissue nutrient levels to maximize growth of flowering plants and characterize the symptoms of nutritional disorders. Measure nutrient uptake through leaves, stems, and roots at different stages of rooting under greenhouse and controlled hydroponic conditions to match fertilizer supply with demand. Quantify the interaction of applied water and fertilizer rates on leaching of different forms of nutrients from propagation media. Identify the fertigation strategies that reduce nutrient leaching while maintaining crop health.

Last Modified: 10/24/2014
Footer Content Back to Top of Page