Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: SWINE GENOMICS AND BIODEFENSE COUNTERMEASURES DISCOVERY

Location: Foreign Animal Disease Research

Project Number: 1940-32000-055-03
Project Type: Specific Cooperative Agreement

Start Date: Jul 01, 2008
End Date: Jun 30, 2012

Objective:
1. Determine protective immune responses in genetically defined swine to better understand innate resistance mechanisms against FMD and CSF viral infections. 2. Determine variations in the molecular pathogenesis of endemic and exotic viral diseases in the same taxonomic family that will lead to the discovery of effective biotherapeutics to prevent viral transmission and viral persistence. 3. Analyze the structural features of polymerase-drug interactions to design effective anti-viral therapeutics against FMD and CSF.

Approach:
1. Knockout pigs will be generated in swine genetics center containing specific deletions of genes of interest for pathogenesis and innate response. Target genes include the receptor for IFN alpha and beta; B2M or CD8alpha gene and IFN gamma receptor. Swine will be assessed for their ability to respond to FMDV and CSF infections or FMDV and CSF vaccines or biotherapeutics. 2. Utilizing cytopathic and non-sytopathic strains of bovine viral diarrhea virus as a model, will determine type I interferon activation pathways in cattle such as PKR and toll-like receptor 3. The effects of Si RNAs targeting PKR and TLR3 on IFN induction will be determined. The role of suppressors of cytokine signaling in blocking IFN mediated IFN production will also be determined. Viral genes that target innate response will be identified. These results will be contrasted with those obtained with CSF virus in swine. 3. Utilizing cloned and expressed RNA-dependent-RNA polymerases (RdRps) from FMDV, BVDV and CSFV will identify structural similarities and potential active sites. Utilizing the structural information will identify potential compounds that can block enzyme activity and viral replication. Candidate inhibitors will be validated utilizing gel-based biochemical assays and high throughput surface plasmon resonance analysis, mass spectrometry and proteomics approaches.

Last Modified: 9/21/2014
Footer Content Back to Top of Page