Page Banner

United States Department of Agriculture

Agricultural Research Service



2008 Annual Report

1a.Objectives (from AD-416)
Objective 1: Identify adipose tissue genes and physiological pathways underlying variation in seasonal infertility in swine.

Sub-objective 1.A: Identify physiological pathways that underlie the relationship between reproductive losses due to seasonal infertility. Sub-objective 1.B: Identify changes in adipose tissue gene expression underlying variation in seasonal infertility in swine.

Objective 2: Define physiological factors contributing to gastrointestinal-microbial population and immune function that are associated with seasonal infertility in sows.

Sub-objective 2.A: Identify microbial popoulation changes and sensitivity to antimicrobials associated with seasonal infertility. Sub-objective 2.B: Characterize functional changes in systemic and tissue level inflammatory and immune cells that are associated with seasonal infertility in the sow.

Objective 3: Determine if a relationship exists between reproductive losses due to seasonal infertility and adipocyte function, metabolism and uterine function.

Sub-objective 3.A: Identify genes that are related to physiological pathways that are associated with seasonal infertility and associated adipocyte function and metabolism. Sub-objective 3.B: Identify genes that are related to physiological pathways that are associated with seasonal infertility and pregnancy failure.

1b.Approach (from AD-416)
Seasonal infertility is proposed to be due to many stressors such as social environment, management, nutrition, thermal environment, and photoperiod. These factors affect neuroendocrine function of the sow, resulting in reduced fertility. It is well established that level of nutrition during lactation affects body condition and weaning-to-estrus interval. A manifestation of these stressors is an alteration in metabolic mass, a reduction in food intake and its correlated metabolic rate, which may be the triggering mechanism. Thus, seasonal infertility may also in part be due to reduced body fat and altered adipocyte function and secretion of regulatory proteins. An integrated and multidisciplinary approach, combining microarray technology with the study of endocrinology, adipocyte function, immune function and gastrointestinal microbial ecology in order to elucidate the mechanisms that contribute to seasonal infertility in the sow. This systems approach will provide an unprecedented opportunity to identify important genes and gene interactions and physiological pathways contributing to variation in seasonal fertility.

3.Progress Report
This research is relevant to Animal Production National Program (NP 101) Action Plan: Component 1: Understanding, Improving, and Effectively Using Animal Genetic and Genomic Resources and Component 2: Enhancing Animal Adaptation, Well-Being and Efficiency in Diverse Projection Systems. Data, tissue and blood samples were collected from four groups of multiparous sow farrowing in the winter (December-March) and are currently being collected from the sows farrowing in the summer (June-September) and samples are currently being analyzed.

5.Significant Activities that Support Special Target Populations

6.Technology Transfer

Number of Non-Peer Reviewed Presentations and Proceedings3
Number of Newspaper Articles and Other Presentations for Non-Science Audiences1

Review Publications
Barb, C.R., Hausman, G.J., Lents, C.A. 2008. Energy Metabolism and Leptin: Effects on Neuroendocrine Regulation of Reproduction in the Gilt and Sow. Reproduction of Domestic Animals. V.43(Suppl.2):324-330.

Last Modified: 7/25/2016
Footer Content Back to Top of Page