Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: INTEGRATED MANAGEMENT OF LAND AND WATER RESOURCES FOR ENVIRONMENTAL AND ECONOMIC SUSTAINABILITY IN THE NORTHEAST U.S.

Location: Pasture Systems & Watershed Management Research

2011 Annual Report


1a.Objectives (from AD-416)
The overall goal of research is to identify chemical and hydrologic processes controlling nutrient export at farm and watershed scales, locate where they occur on the landscape, quantify what changes occur during transport in stream to receiving waters, and develop, implement, and assess cost-effective Best Management Practices (BMPs) control of nutrient export at farm and watershed levels. Specific objectives are: 1. Quantify impacts of current and alternative fertilizer, manure, crop, and grazing management practices on nutrient cycling within soils at point and field scales. Effective June 15, 2007, research on Objective 1.3: “Quantify NH3 and N2O emissions from urine deposition during grazing” was terminated, and this effort was redirected to Objectives 3.2 and 3.3. 2. Evaluate landscape-scale controls on nutrient transfers to quantify aggregate N and P losses from farming systems and watersheds typical of the Northeast. 3. Identify and quantify processes occurring in the stream channel that control the transfer of nutrients lost from the farm to lakes, reservoirs, and estuaries. Effective June 15, 2007, resources previously allocated to Objective 1.3 were redeployed to accelerate work on Objectives 3.2: “Selecting chemical amendments to reduce P mobility in terrestrial and aquatic systems” and Objective 3.3: “Control nutrient export from ditch drained agriculture” with a focus on the use of industrial byproducts coupled with drainage practices in agricultural and urban landscapes to minimize impact on water quality within the Chesapeake Bay watershed. 4. Determine effectiveness of BMPs in the Cannonsville/Town Brook Watershed and other appropriate watersheds (CEAP-related). 5. Develop, enhance, and apply models and user-oriented indices at field, farm, and watershed scales to evaluate BMPs and N and P export from watersheds.


1b.Approach (from AD-416)
Most of the proposed research will be conducted at three sites in the Northeast U.S.: Mahantango Creek Watershed, PA; Town Brook Watershed, NY; and Manokin River Watershed, MD (Figure 3). These sites are located in agriculturally important areas of the Northeast and reflect the local land use practices. We already have established contacts with landowners at each site and have developed an infrastructure for routine measurement and chemical sampling of surface runoff, subsurface flow, and streamflow. Lease agreements already in place make it easy for us to change management and/or implement alternative practices for cause-and-effect studies on water quality impacts. Also included in this section is a description of the National P Research Project (NPRP) rainfall simulation protocol. Experimental design will vary as a function of each specific research objective and site characteristics. In all cases, appropriate experimental design and statistical analyses will be used.


3.Progress Report
Activities for this project fall under ARS National Program 211, and contribute to NP211 Problem Areas 1 (Effectiveness of Conservation Practices), 3 (Drainage Water Management Systems) and 5 (Watershed Management, Water Availability and Ecosystem Restoration). Under objective 1, publications were developed on novel practices to improve manure and fertilizer application. We developed a special issue of Journal of Environmental Quality on novel manure management practices, as well as papers on a active leaf sensor to improve split application of nitrogen in corn. These findings support state (PA, DE, MD, NY and VA) efforts to respond to the Chesapeake Bay TMDL and are expected to impact over 10,000 acres of farmland in the Chesapeake Bay watershed. Under objective 2, publications were developed that quantify sources of stream sediment discharge and pathways of nutrient transport from hillslopes to streams. Our finding that field erosion accounts for the majority of watershed sediment loads, derived from research in the Ridge and Valley region of the Chesapeake Bay watershed, provides an important contrast to previous studies in the Piedmont region of the Bay watershed that found bank erosion to be most important. Research on critical flow pathways of nutrients and short-term predictions of runoff generation serves as the basis for next-generation site assessment tools. Under objective 3, we presented and/or published findings on field, edge-of-field and within-ditch practices to minimize nutrient and trace element transfers in ditch drained areas of the Coastal Plain region. New methods to filter runoff developed under this objective are now featured in USEPA’s 2010 Chesapeake Bay TMDL as next generation nutrient management practices. Under objective 4, five papers were published summarizing information related to the Mahantango Creek watershed database. This database includes 40 years of flow and water quality information and is available on-line as part of ARS’s STEWARDS database. Our approach to formally publishing watershed meta-data sets precedent for other watersheds in the STEWARDS database. Under objective 5, presentations and publications were developed on farm-scale model evaluations of alternative manure management strategies and on the development of a runoff forecasting model tied to daily weather forecasts. Findings from this objective demonstrate that new manure injection technologies are economically benign or advantageous while improving air and water quality and prove that weather forecasts can be modified to provide daily support of nutrient management decisions.


4.Accomplishments
1. Quantified environmental and economic benefits of manure injection technologies. ARS scientists in University Park, PA, Booneville, AR, and Auburn, AL, along with their colleagues at land grant universities in five mid-Atlantic states, conducted research on new methods to incorporate manure into soils as an alternative to the more common method of applying manure to the soil surface. The researchers quantified the benefits of injecting manures into soils with different technologies, demonstrating the potential of new shallow injection technologies to lower odor to background levels within 3 hours, decrease ammonia emissions by more than 70% and reduce phosphorus in runoff to levels comparable to soils that did not receive manure. Manure injection also results in minimal soil disturbance which reduces erosion in comparison to conventional tillage. Research showed that costs of purchasing and maintaining manure injectors were balanced, even outweighed, by improved manure nutrient use by crops. As a result of this work, state and federal initiatives in the Chesapeake Bay watershed include plans to expand the use of manure injection technologies to more than 47,500 acres of agricultural land. The USDA and university researchers received the 2011 Mid-Atlantic Regional Educational Institution and Federal Laboratory Partnership Award and their work is cited in the Watershed Implementation Plans developed by MD, NY, PA and VA.

2. New sensor shown to improve fertilizer nitrogen use efficiency by corn across Pennsylvania. USDA-ARS research with a canopy sensor provides the basis for matching corn nitrogen requirements with nitrogen fertilizer rates that will yield the optimum economic return and minimize nitrogen losses to the environment. Traditional fertilizer management practices deliver less than 50% of nitrogen in fertilizer to growing corn crops. ARS scientists at University Park, PA, showed that, compared with other methods of guiding nitrogen fertilizer rates, a canopy reflectance sensor provided recommendations that best matched the economic optimum fertilizer rate. Besides providing more accurate nitrogen recommendations, the sensor provides immediate results and can be used to tailor fertilizer application rates to variable soil conditions within a field. This technology, while still new to PA, provides a way to improve nitrogen applications to corn, thus improving return for the farmer and reducing environmental losses in critical watersheds such as the Chesapeake Bay.


Review Publications
Penn, C.J., Bryant, R.B., Callahan, M.P., Mcgrath, J.M. 2011. Use of industrial by-products to sorb and retain phosphorus. Communications in Soil Science and Plant Analysis. 42:633-644.

Schmidt, J.P., Beegle, D., Zhu, Q., Sripada, R. 2010. Improving in-season nitrogen recommendations for maize using an active sensor. Field Crops Research. DOI: 10.1016/j.fcr.2010.09.005.

Penn, C.J., Bryant, R.B. 2008. Phosphorus Solubility in Response to Acidification of Dairy Manure Amended Soils. Soil Science Society of America Journal. 72:238-243.

Buda, A., Kleinman, P.J.A. , Srinivasan, M. S., Bryant, R.B., Feyereisen, G.W. Factors influencing surface runoff generation from two agricultural hillslopes in central Pennsylvania. Hydrological Processes. 23(9):1295-1312.

Church, C., Kleinman, P.J.A., Bryant, R.B., Saporito, L.S., Allen, A.L. 2010. Occurrence of arsenic and phosphorus in ditch flow from litter-amended soils and barn areas. Journal of Environmental Quality. Available: https://www.soils.org/files/publications/jeq/abstracts/39-6/q09-0210-abstract.pdf.

Buda, A.R., Dewalle, D.R. 2009. Dynamics of stream nitrate sources and flow pathways during stormflows on urban, forest and agricultural watersheds in central Pennsylvania, USA. Hydrological Processes. 23(23):3292-3305.

Buda, A.R., DeWalle, D.R. 2009. Using atmospheric chemistry and storm track information to explain the variations of nitrate stable isotopes in precipitation at a site in central Pennsylvania, USA. Atmospheric Environment. 43(29):4453-4464.

Feyereisen, G.W., Kleinman, P.J., Folmar, G.J., Saporito, L.S., Way, T.R., Church, C., Allen, A.L. 2010. Effect of direct incorporation of poultry litter on phosphorus leaching from coastal plain soils. Journal of Soil and Water Conservation. 65(4):243-251.

Dell, C.J., Salon, P., Franks, C., Plowden, Y. 2008. No-till and cover crop impacts on soil carbon and associated properties on Pennsylvania dairy farms. Journal of Soil and Water Conservation. 63(3):136-142.

Dell, C.J., Kleinman, P.J., Veith, T.L., Maguire, R.O. 2009. Implementation and monitoring measures to reduce agricultural impacts on water quality: US experience. Tearmann: Irish Journal of Agri-Environmental Research. 17:103-115.

Maguire, R.O., Kleinman, P.J.A., Dell, C.J., Beegle, D.B., Brandt, R.C., Mcgrath, J.M., Ketterings, Q.M. 2011. Manure management in reduced tillage and grassland systems: A review. Journal of Environmental Quality. 40:292-301.

Castellano, M.J., Schmidt, J.P., Kaye, J.P., Walker, C., Graham, C., Lin, H., Dell, C.J. 2009. Hydrological and biogeochemical controls on the timing and magnitute of nitrous oxide flux across an agricultural landscape. Global Change Biology. 16(10):2711-2720.

Castellano, M., Schmidt, J.P., Kaye, J.P., Walker, C., Graham, C., Lin, H., Dell, C.J. 2011. Hydrological controls on heterotrophic soil respiration across an agricultural landscape. Geoderma. 162:273-280.

Feyereisen, G.W., Lowrance, R., Strickland, T.C., Bosch, D.D., Sheridan, J.M. 2008. Long-term stream chemistry trends in the South Georgia Little River Experimental Watershed. Journal of Soil and Water Conservation. 63(6):475-486.

Johnson, K.N., Kleinman, P.J.A., Beegle, D., Elliott, H., Saporito, L.S. 2011. Effect of dairy manure slurry application in a no-till system on phosphorus runoff. Nutrient Cycling in Agroecosystems. DOI: 10.1007/s10705-011-9422-8.

Verbree, D., Duiker, S., Kleinman, P.J. 2010. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure. Journal of Environmental Quality. 39(5):1762-1770.

Brandt, R.C., Elliott, H.A., Adviento-Borbe, M.A., Wheeler, E.F., Kleinman, P.J., Beegle, D.B. 2011. Influence of manure application method on odor emissions. Journal of Environmental Quality. 40:431-437.

Schmidt, J.P., Sripada, R.P., Beegle, D.B., Rotz, C.A., Hong, N. 2011. Within-field variability in optimum nitrogen rate for corn linked to soil moisture variability. Soil Science Society of America Journal. 75:306-316.

Luo, L., Lin, H., Schmidt, J.P. 2010. Quantitative relationships between soil macropore characteristics and preferential flow and transport. Geoderma. 74:1929-1937.

Zhu, Q., Zhou, S., Schmidt, J.P., Wu, S. 2010. Influence of plow pan on the enrichment and depletion of heavy metals in the surface soils. Fresenius Environmental Bulletin. 19:2176-2184.

Shigaki, F., Sharpley, A.N., Prochnow, L. 2006. Phosphorus source and the transport of phosphorus in surface runoff. Journal of Environmental Quality. 35(6):2229-2235.

Pote, D.H., Way, T.R., Kleinman, P.J., Moore Jr, P.A., Meisinger, J.J., Sistani, K.R., Saporito, L.S., Allen, A.L., Feyereisen, G.W. 2011. Subsurface application of poultry litter in pasture and no-till soils. Journal of Environmental Quality. 40:402-411.

Kibet, L.C., Allen, A.L., Kleinman, P.J.A., Feyereisen, G.W., Church, C., Saporito, L.S., Way, T.R. 2011. Phosphorus runoff losses from a no-till coastal plain soil with surface and subsurface-applied poultry litter. Journal of Environmental Quality. 40:412-420. DOI: 10/2134/jeq2010.0161.

Kleinman, P.J.A., Sharpley, A.N., Buda, A.R., McDowell, R.W., Allen, A.L. 2011. Soil controls of phosphorus runoff: management barriers and opportunities. Canadian Journal of Soil Science. 91:329-338.

Dell, C.J., Meisinger, J.J., Beegle, D.B. 2010. Subsurface application of manure slurries for conservation tillage and pasture soils and their impact on the nitrogen balance. Journal of Environmental Quality. 40(2):352-361.

Last Modified: 7/23/2014
Footer Content Back to Top of Page