Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: SALINITY AND TRACE ELEMENTS ASSOCIATED WITH WATER REUSE IN IRRIGATED SYSTEMS: PROCESSES, SAMPLING PROTOCOLS, AND SITE-SPECIFIC MANAGEMENT Project Number: 5310-61000-013-00
Project Type: Appropriated

Start Date: Dec 08, 2006
End Date: Dec 07, 2011

Objective:
Water quality criteria were initially developed to protect irrigated soils from possible adverse soil structural changes (such as reduced infiltration) and avoid reductions in crop yield due to salinity. Increased demands on our limited water resources necessitates that we more accurately determine these criteria since many waters deemed unsuitable can be used under specified conditions. Application of these criteria and application of recycled irrigation drainage water and treated municipal waste water will reduce the margin of error and require that we carefully monitor changes in soil properties, and thus develop improved monitoring protocols and practices. Based on these needs the research project is focused under two objectives: Objective 1: Develop new knowledge and guidelines related to major ion, B, and Mo concentrations for the sustained use of degraded waters including drainage waters and municipal waste waters. Objective 2: Evaluate the use of geophysical and geographic information system technology to monitor spatio-temporal changes of soil properties, salinity, trace elements and N. Both of these objectives are necessary for effective and protective implementation of irrigation with impaired waters. Although the stated objectives can be achieved by pursuing parallel lines of research, they will be combined in development of management practices. The monitoring technology objective is also essential to future field evaluation of the criteria and predictions made relative to objective one.

Approach:
1:The adsorption behavior of B and Mo will be studied as a function of solution pH, solution anion concentration, electrolyte composition, and competing anion concentration in batch systems on soils chosen to represent a variety of soil orders. The adsorption behavior will be described using a chemical surface complexation model, allowing for development of improved management of degraded waters high in B and Mo. The desorption behavior of both native soil B and recently added B will be characterized in batch systems to determine the extent of desorption hysteresis in the presence and absence of competing ions. If desorption hysteresis is found, mathematical equations will be developed to describe the B desorption process in batch systems. Data will be analyzed, and B movement predicted using initial soil characteristics, ET calculations, and water composition using the UNSATCHEM model. New B transport routines will be developed if needed. Waters of varying composition including salinity, SAR, pH, alkalinity, and Ca/Mg ratio, will be applied to soils in outdoor containers with measurement of the water infiltration rate for both irrigation water and alternate application of rain using a rainfall simulator. The results of these experiments will be incorporated into predicted routines in UNSATCHEM and in guidelines for use of impaired waters. We will evaluate the impact of use of degraded water on soil quality, productivity and forage quality of a marginally productive saline-sodic soil. Characterization of soil spatial variability will utilize ECa measured by electromagnetic induction equipment, where each site is geo-referenced using GPS. 2: Validation of use of ECa-directed sampling to spatially characterize soil properties (salinity, texture, water content) will be made at a drainage water reuse site. ECa measurements will be used to determine 40 site locations from a response surface sampling design algorithm. Additional sites will be randomly selected for a validation data set. Correlating properties will be predicted from spatial regression models and compared to randomly chosen positions where validation sample data have been collected with development of a protocol for model validation of directed sampling techniques. A site in semi-arid CO under no-till will be used to evaluate ECa-delineated zones as a framework for site-specific N management in winter wheat and for field-scale monitoring of soil quality response and identification of soil quality trends. To evaluate site specific management, using ECa zones, 3 years of yield, ECa zone, and N-treatment maps will be compared with geo-referenced soil sample analyses for N-use efficiency and optimal N rates for each ECa zone. A phenomenological model of salinity development will be formulated based on spatial data of potential soil salinization factors (e.g., soil type, poor drainage areas, topography, leaching fraction, depth to groundwater, groundwater quality, etc.) for the Red River Valley basin of North Dakota and Minnesota. The phenomenological model will be used to create an inventory map of salinity for the entire Red River Valley. Formerly 5310-5310-61000-012-00D.

Last Modified: 7/25/2014
Footer Content Back to Top of Page