Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: INTRAGENIC TOOLS FOR IMPROVED RICE BIOTECHNOLOGY

Location: Crop Improvement & Utilization Research

2009 Annual Report


1a.Objectives (from AD-416)
The goal of the project is to develop and characterize the molecular tools required to generate genetically engineered intragenic rice plants. Two Agrobacterium transformation binary vectors carrying Plant-derived transfer DNAs (P-DNAs) will be constructed. A compatible helper binary vector carrying a separate Transfer-DNA (T-DNA) with a selectable marker, a reporter gene, and a cre recombinase expression cassette, all flanked by loxP attachment sites will also be constructed. The ability of this dual binary vector Agrobacterium mediated transformation system to generate intragenic rice plants will be evaluated.


1b.Approach (from AD-416)
The molecular tools needed to generate genetically engineered intragenic rice will be identified and tested. A dual binary vector system with separate P-DNAs and T-DNAs will be constructed using standard molecular biology techniques. The intragenic vector will carry a P-DNA that contains only native rice-derived sequences that function as Agrobacterium border sequences, expression control elements (promoters and terminators) and one of two rice regulatory genes which stimulate the production of colored anthocyanins or proanthocyanidins in various rice tissues. A second binary vector compatible with the intragenic vector will also be constructed. This vector will contain standard Agrobacterium T-DNA border sequences and three transgene expression cassettes; a hygromycin resistance selectable marker, a constitutively expressed GUS reporter, and the cre recombinase gene controlled by a rice anther-specific promoter. These transgenes present on the T-DNA will be flanked by loxP attachment sites allowing Cre-mediated site-specific excision and transgene removal in rice anther and pollen tissue. This transformation system also incorporates an alternative strategy to identify marker-free intragenic rice plants due to the presence of separate T-DNA and P-DNA transfer from Agrobacterium. Some of the genetically engineered rice will contain a P-DNA that has integrated into the rice genome at locus separate from the integrated T-DNA. In these circumstances, some of the progeny plants will contain only the P-DNA due to independent segregation. The efficiency by which these two methods produce marker-gene free rice plants positive for anthocyanin accumulation will be evaluated and compared. Documents Reimbursable with CSREES. Log 33063.


3.Progress Report

This report documents research supported by a USDA Biotechnology Risk Assessment grant. The goal of the project is to develop the molecular tools to genetically engineer rice using only native rice DNA sequences (i.e. to create “intragenic” rice). Tests of novel individual rice-derived gene expression cassettes and intragenic DNA transfer components constructed for the project confirmed that each is functional. Assembly of several Agrobacterium transformation vectors containing these rice-derived components was completed. Alternative strategies to generate intragenic rice are being compared. One strategy involving co-transformation with two independent transformation vectors (one intragenic, the other transgenic) successfully produced transformed rice plants. Characterization of these plants and the production of additional plant lines are underway. A second strategy utilizing a single intragenic vector containing a rice-derived selectable marker was examined. Transformed rice callus containing this native selectable marker gene has been produced and regeneration of the intragenic rice plants is in progress.


Last Modified: 7/31/2014
Footer Content Back to Top of Page