Page Banner

United States Department of Agriculture

Agricultural Research Service

Related Topics

Research Project: GENETIC AND BIOLOGICALLY-BASED MANAGEMENT OF VEGETABLE CROP DISEASES

Location: Vegetable Research

Project Number: 6659-22000-019-00
Project Type: Appropriated

Start Date: Mar 14, 2007
End Date: Mar 13, 2012

Objective:
Objective 1: Elucidate the etiology and epidemiology of Pepino mosaic virus on tomato, Pseudomonas syringae pv. maculicola on vegetable Brassicas, and vine decline pathogens on cucurbits to identify vulnerable areas that provide biologically-based control opportunities. Objective 2: Identify and characterize genetic sources of disease resistance and facilitate the incorporation of these genes into enhanced germplasm of watermelon, tomato, and vegetable Brassicas. Objective 3: Identify and characterize new and existing bacteria antagonistc to phytopathogens and elucidate the factors that affect the potential efficacy of these biological control agents. Objective 4: Evaluate biologically-based control strategies to develop new and effective management practices against root-knot nematodes, pathogenic bacteria, and viruses.

Approach:
Develop sensitive PCR-based detection methods and utilize these techniques to evaluate virus distribution in seed and plant tissues of tomato as well as other alternative crops or weed hosts. Develop molecular-based markers for identification and utilize these markers for environmental tracking of the vegetable Brassica leaf spotting bacterium Pseudomonas syringae pv. maculicola (Psm). Screen tomato germplasm for resistance to PepMV, evaluate the inheritance of resistance to Zucchini yellow mosaic virus (ZYMV) in watermelon, and develop molecular markers linked to the ZYMV resistance locus in watermelon. Screen germplasm from national collections of Brassica rapa and Brassica juncea for resistance to Pseudomonas syringae pv maculicola, and evaluate the genetics of resistance. Identify non-phytopathogenic pseudomonads that inhibit Pseudomonas syringae pv. maculicola and test for efficacy as biological control agents. Identify bacterial genes involved in bacterial-biocontrol colonization of plants using full-genome microarray analysis. Develop an effective seed treatment method for PepMV in tomato seed and generate virus-free materials of heirloom sweetpotato germplasm and breeding materials. Test effectiveness of the nematode-ovicidal bacterium Pseudomonas synxantha BG33R against root-knot nematode on melon in greenhouse and field assays.

Last Modified: 4/17/2014
Footer Content Back to Top of Page