Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: SOIL MANAGEMENT FOR SUSTAINABLE AGRICULTURAL SYSTEMS THAT PREVENT WIND EROSION AND ENHANCE THE ENVIRONMENT

Location: Wind Erosion and Water Conservation Research

Project Number: 6208-12000-009-00
Project Type: Appropriated

Start Date: Jun 28, 2006
End Date: Jun 27, 2011

Objective:
Knowledge of the effects of cropping systems on selected soil properties is needed to optimize productivity and develop sustainable agricultural systems. The effects of alternative dryland and irrigated crop and livestock systems on water infiltration, soil aggregation, and other soil properties will be defined through the following sub-objectives. 1.1 Determine the effect of agricultural management practice factors such as crop type, irrigation amount and type, tillage intensity, and residue cover on water infiltration aggregate stability carbon sequestration, soil microbial community structure, and enzymes that affect soil function. 1.2 Validate and further refine the Soil Conditioning Index and Soil Management Assessment Framework to assess the sustainability of management practices and systems. Wind erosion and dust emissions are controlled by biological and physical processes and characteristics that must be determined to develop successful methods of dust mitigation. We will investigate basic biological and physical processes and characteristics of wind erosion and airborne dust needed to develop mitigation strategies using the following sub-objectives. 2.1 Quantify total airborne soil mass transport and fine particle dust emissions as affected by soil texture and cropping system. 2.2 Determine enzyme activities, microbial community composition, and chemical characteristics of fine particle dust from agricultural soils to identify the sources and origin of dust. 2.3 Validate and further refine the time fraction equivalent method for determining the threshold condition for soil movement in the field under natural wind and soil conditions. 2.4 Identify morphological traits that promote resistance to injury caused by abrasion of plants by sand particles during wind storms and determine the most resistant varieties of selected common crops.

Approach:
Agricultural management practice factors such as crop type, irrigation amount and type, tillage intensity, and residue cover will be correlated with water infiltration, aggregate stability, carbon sequestration, soil microbial community structure, and enzymes that affect soil function. The soil conditioning index and soil management assessment framework, used to assess the sustainability of management practices and systems, will be evaluated and refined. Total airborne soil mass transport and fine particle dust emissions as affected by soil texture and cropping systems will be quantified. Enzyme activities, microbial community composition, and chemical characteristics of fine particle dust from agricultural soils will be used to identify the sources and origin of dust. The time fractions equivalent method for determining the threshold condition for soil movement in the field under natural wind and soil conditions will be evaluated and further refined. Morphological traits that promote resistance to injury caused by abrasion of plants by sand particles during wind storms will be identified and the most resistant varieties of selected common crops will be determined.

Last Modified: 9/3/2014
Footer Content Back to Top of Page