Page Banner

United States Department of Agriculture

Agricultural Research Service

2007 Annual Report

1a.Objectives (from AD-416)
A major constraint to increasing the production efficiency of the Nation's cool and cold water aquaculture industry is the lack of genetically improved strains of fish for aquaculture. There is only limited genetic information on traits that will enhance production efficiency and yield a better quality fish. Identification and characterization of genes affecting aquaculture production traits will facilitate the development of genetically improved strains to increase aquaculture production efficiency. The objectives of the research outlined in this agreement focus on the identification of genes affecting oocyte maturation and embryogenesis in rainbow trout. Characterization of these genes will result in more in-depth understanding of the biology of reproduction and embryonic development and will impact strategies for improving developmental characteristics in broodstock.

1b.Approach (from AD-416)
Collaborators at the USDA/ARS/NCCCWA and West Virginia University have worked to develop resources for conducting functional genomic research in rainbow trout. Resources which specifically target studies on embryogenesis include large volumes of expressed sequence tag data from oocyte and embryonic developmental stages and a cDNA panel representing oocytes thru day 50 post fertilization for gene expression analyses. Strategies will include analyses of gene expression and proteomic data in NCCCWA Broodstock to identify and characterize novel-oocyte specific genes, similar strategies will be employed to characterize gene expression throughout embryonic development.

3.Progress Report
This serves to document research conducted under a specific cooperative agreement between ARS and West Virginia University entitled, “Functional Genomics Research for Rainbow Trout Aquaculture Production.” The focus of this project continues to be functional genomic characterization of biological processes including oocyte and spermatocyte maturation, embryonic development, and improved protein accretion in muscle as related to aquaculture production traits. Currently sixteen genes, including those annotated in other species and several not previously identified, are being characterized for their roles in these process by determining their DNA sequence, genetic map location, and patterns of gene expression. The ADODR is in frequent contact with the cooperator through phone calls, email, and annual site visits in addition to receipt of written reports.

Last Modified: 7/6/2015
Footer Content Back to Top of Page