Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: IPM TECHNOLOGIES FOR SUBTROPICAL INSECT PESTS

Location: Subtropical Insects and Horticulture Research

Project Number: 6618-22000-030-00
Project Type: Appropriated

Start Date: May 27, 2005
End Date: May 20, 2010

Objective:
To characterize plant responses to feeding by horticultural pests, identify sources and genetic mechanisms of plant resistance to subtropical pests, and select resistant germplasm. To develop and implement biological control programs that reduce the economic importance of subtropical pests of horticultural crops. To increase our knowledge of salient aspects of the biology and behavior of invasive horticultural pests in association with their host plants and natural enemies. Identify combinations of pest control tactics for pests of floricultural and nursery/landscape plants that interact synergistically to improve pest control, are practical to implement, and will minimize environmental disruption.

Approach:
IPM strategies based on biological control will be developed. Natural control of subtropical insect pests by native and imported biological control agents will be assessed, and methods of conservation and augmentation to boost natural control by these agents will be investigated. Exotic biological control agents for invasive insect pests will be identified through literature reviews, collaborations with foreign scientists, or foreign exploration; adhering to federal and state regulations, these agents will be imported into the US, evaluated under federal or state quarantine facilities, released and monitored for establishment and impact. IPM strategies based on plant resistance will be developed. Insect bioassays and field trials will be conducted to identify plant varieties that are pest resistant. Citrus, vegetable and ornamental germplasm as well as non-host plant species will be screened; genes associated with insect resistance will be cloned, characterized and considered for cultivar improvement through traditional and transgenic procedures. When plant resistance is found, plant products responsible for resistance will be identified and explored for use in IPM. Transgenic plants produced at USHRL or elsewhere will be evaluated for effects on insect biology, resistance to pests, and disease transmission by insect vectors. The genetic bases of insect biology and of interactions among insect vectors, plant pathogens and host plants will be investigated using molecular techniques and genomics analyses, and IPM opportunities based on these investigations will be pursued. Molecular techniques will be used to examine the biology, gene expression and biochemical pathways of exotic insect pests. Vector-pathogen relations will be characterized biochemically and biologically, and the results will be applied to insect pest problems. Research on insect biology and behavior will be conducted to advance IPM. Biorationals such as entomopathogenic fungi, viruses and bacteria, microbials, sugar esters, oils, and azadiractin that have potential as environmentally benign IPM components will be identified and assessed. Methods of monitoring and estimating infestation densities of insect pests and their natural enemies will be developed including traps baited with attractants and sampling protocols. The ecology of insect pests and their natural enemies will be assessed in relation to pest management.

Last Modified: 7/28/2014
Footer Content Back to Top of Page