Page Banner

United States Department of Agriculture

Agricultural Research Service

Nicholas C. Manoukis

Research Biologist

Nicholas Manoukis

Contact Information

U.S. Pacific Basin Agricultural Research Center
64 Nowelo St.
Hilo, Hawaii 96720 
Ph: (808) 932-2118
Fax: (808)959-5470
personal site:


via ARIS system

via Google scholar


  • Ph.D., University of California Los Angeles, 2006
  • B.A., Reed College, 1997

Academic Positions

  • 2010-present, Research Biologist, USDA-ARS, U.S. Pacific Basin Agricultural Research Center, Hilo, Hawai'i
  • 2007-2010, Postdoctoral Fellow, NIAID-NIH, Laboratory of Malaria and Vector Research, Bethesda Maryland

Research Accomplishments

My current research focuses on the ecology and behavior of Tephritid fruit flies, particularly on C. capitata, B. orientalis and B. cucurbitae, three of the four species of economic importance in Hawai'i. These pests are a major threat to mainland US agriculture as they are not established there. Previously I spent nearly a decade studying the malaria mosquito A. gambiae in Mali, West Africa.

Estimating the time to extirpation of invasive Medfly

Ceratitis capitata, Medfly, is a major pest of fruit crops around the world. In many areas where it is not established it is seen to recurrently invade, such as in S. California. When Medfly is found in these areas by monitoring programs intensive and costly quarantine and population elimination measures are put into place (in California the latter includes insecticide spraying, host fruit stripping, increased trapping and increased Sterile Insect Releases).abs plot2

One important question is how long to maintain the quarantine after Medfly is no longer detected. Currently, officials rely on traditional deterministic degree-day modeling to estimate how long, given historical temperature profiles, it should take for three generations of Medfly to pass. Depending on where the find is made, a quarantine can last 9 months or longer. I am working on an Agent Based Simulation (ABS) which will allow increased specificity, realism and uniform margins of safety when estimating quarantine lengths. I am implementing this in a software package which will be available under a public domain license shortly.

In addition to the ABS, we are simulating outbreaks using wild Medflies in my lab. For this we are stepping through the exact hourly temperature, humidity and photoperiod as measured during several recent outbreaks in California. We simply want to see how long the wild flies can live and how well that matches with our theoretical expectation.

New approaches to quantifying tephritid behavior

Though a lot is known about pest fruit fly behavior, some apects have remained stubbornly hard to measure. This includes the how and why they move over the landscape, and details on their attraction to semiochemicals.

In my laboratory we are addressing both these questions using new approaches. behavior detection apparatusWe have been successful in examining the time of attraction to cuelure by Bactrocera cucurbitae, the melon fly, by using a computer vision approach. You can see some details on this method here in a video and there will be more details in an upcoming paper.

We are also attempting to use RFID technology to measure some of the finer-scale life-time behaviors of individual flies. There will be more details on these experiments soon.

The dance of An. gambiae in mating swarms

mqtrack1Anopheles gambiae is currently described in general terms: they form crepuscular swarms near markers of horizontal contrast, and mate recognition may be mediated by wing beat frequencies or through>chemical cues. A more detailed view this process and of differences betweenmqtrack known subgroups chromosomal/molecular forms regarding male swarming behavior will significantly improve our understanding of natural selection and mate specificity in the field. Since early 2007 I have been working to localize and trackindividual mosquitoes within swarms in the field using stereoscopic video together with Dr. Tovi Lehmann and Malian collaborators at MRTC. Since 2009 we have been working closely with the Paley Laboratory at the University of Mayland aerospace engineering department to create a semi-supervised 3D tracking system. You can read the first paper to come from this project here and follow later developments on my personal pages.

Service, Leadership and Participation in Professional Activities:

  • Member, Entomological Society of America
  • Member, Hawai'i Entomological Society
  • Led a class on Dynamical Systems Modeling at the Foundation for Advanced Education in the Sciences (NIH) 2009-2010
  • Judge, California State Science Fair 1998-2002

Honors, Awards, Achievements and Recognition:

  • Recipient of Systems and Integrative Biology Training Grant 2003-2004
  • Recipient of California Genetic Resources Conservation Grant 2000-2001

Last Modified: 10/3/2012
Footer Content Back to Top of Page