Skip to main content
ARS Home » News & Events » News Articles » Research News » 2010 » Improving Soil for Better Lawns and Gardens

Archived Page

This page has been archived and is being provided for reference purposes only. The page is no longer being updated, and therefore, links on the page may be invalid.

Read the magazine story to find out more.

Photo: Plots of three different compacted subsoils before replacement topsoil is added. Link to photo information
ARS scientists are developing replacement subsoils and topsoils to build rain gardens and better and less-costly sports fields and lawns on compacted or otherwise degraded soils. Click the image for more information about it.


For further reading

Improving Soil for Better Lawns and Gardens

By Don Comis
November 9, 2010

U.S. Department of Agriculture (USDA) scientists in West Virginia are finding ways to improve soil on degraded land so it can be used for sports fields and other uses.

Researchers with USDA's Agricultural Research Service (ARS) at the agency's Appalachian Farming Systems Research Center (AFSRC) in Beaver, W.Va., are developing constructed or replacement subsoils and topsoils to build better and less-costly sports fields, raingardens and lawns on former landfills, mine lands and other degraded land. ARS is USDA's principal intramural scientific research agency.

The constructed soil research project is in its fourth year. ARS is conducting the research in cooperation with the National Turfgrass Research Initiative, Inc., a joint turfgrass industry-ARS program created in 2007. The initiative draws on the expertise of scientists with ARS and at universities, according to lead scientist Rich Zobel at AFSRC.

The turfgrass industry has set a high priority on improving degraded soils by constructing soils that include readily available rural, urban and industrial byproducts that can be mixed with local soils. These byproduct mixes are being tailored to not only reduce rain runoff and erosion, but also to remove or neutralize pollutants before they reach storm drains.

With lower costs through using inexpensive local byproducts, schools and local parks have a better chance of being able to afford soil replacement for better turfgrass survival. Eliminating compacted soil is the first step toward growing good, robust grass.

The most promising mixture so far includes quarry byproducts and composted chicken litter. It has met predetermined requirements such as the ability to transmit stormwater.

Zobel and his colleagues develop recipes for constructing designer soils from various materials in Ohio, Kentucky, Tennessee, West Virginia, Virginia and southern Pennsylvania.

For the future, Zobel envisions new turfgrass varieties, possibly perennial ryegrass and tall fescue, that will penetrate compacted soil and renovate fields without the need to tear up fields and till compacted soil.

Read more about this research in the November/December 2010 issue of Agricultural Research magazine, available online at: /is/AR/archive/nov10/gardens1110.htm.

Findings from this research have been published in the Journal of Soil Scienceand Environmental Management and in USGA Turfgrass and Environmental Research Online.