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Simple Summary: The discovery of Comperiella calauanica a parasitoid confirmed to be the major
natural enemy of the invasive diaspidid, Aspidiotus rigidus, has led to the promise of biological
control in sustainable pest management of this devastating coconut pest. In this study, we employed
Maximum Entropy (Maxent) to develop a bioclimate-based species distribution model (SDM) for
the parasitoid from presence-only data recorded from field surveys conducted in select points the
Philippines. Results of assessment of the generated model point to its excellent power in predicting
either suitability of habitat, or potential occurrence or distribution of C. calauanica. Since the parasitoid
is highly host-specific, the model may also apply to A. rigidus. Field surveys in select areas in the
Philippines confirmed the occurrence of the invasive coconut scale in areas predicted by the model
as having considerable probability of occurrence, or habitat suitability. Our findings strongly suggest
the potential utility of Maxent SDMs as tools for pest invasion forecasting and GIS-aided surveillance
for integrated pest management (IPM).

Abstract: Comperiella calauanica is a host-specific endoparasitoid and effective biological control agent
of the diaspidid Aspidiotus rigidus, whose outbreak from 2010 to 2015 severely threatened the coconut
industry in the Philippines. Using the maximum entropy (Maxent) algorithm, we developed a species
distribution model (SDM) for C. calauanica based on 19 bioclimatic variables, using occurrence data
obtained mostly from field surveys conducted in A. rigidus-infested areas in Luzon Island from
2014 to 2016. The calculated the area under the ROC curve (AUC) values for the model were very
high (0.966, standard deviation = 0.005), indicating the model’s high predictive power. Precipitation
seasonality was found to have the highest relative contribution to model development. Response
curves produced by Maxent suggested the positive influence of mean temperature of the driest
quarter, and negative influence of precipitation of the driest and coldest quarters on habitat suitability.
Given that C. calauanica has been found to always occur with A. rigidus in Luzon Island due to high
host-specificity, the SDM for the parasitoid may also be considered and used as a predictive model
for its host. This was confirmed through field surveys conducted between late 2016 and early 2018,
which found and confirmed the occurrence of A. rigidus in three areas predicted by the SDM to have
moderate to high habitat suitability or probability of occurrence of C. calauanica: Zamboanga City
in Mindanao; Isabela City in Basilan Island; and Tablas Island in Romblon. This validation in the
field demonstrated the utility of the bioclimate-based SDM for C. calauanica in predicting habitat
suitability or probability of occurrence of A. rigidus in the Philippines.
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1. Introduction

The Philippines is a primarily agricultural nation in Southeast Asia, despite rapid
industrialization in many areas of the archipelago. Statistics in 2015 indicate that 29.15%
of total employment in the Philippines is in agriculture [1]. The agricultural sector has
provided the fourth highest contribution to the country’s gross domestic product (GDP),
with the latest data summarized by the Philippine National Statistics Coordination Board
indicating GDP from agriculture at 53.7 billion Philippine pesos (equivalent to about
1 billion US dollars). Coconut is one of the high value commercial crops of the country
and has been recognized for years as a top agricultural export [2]. However, production
of this crop was severely threatened by an outbreak of the destructive coconut scale,
Aspidiotus rigidus Reyne (Hemiptera: Diaspididae), which devastated plantations in the
Southern Tagalog region of Luzon Island from 2010 to 2015. Feeding of this diaspidid
on the foliage of coconut palms has been found to impair photosynthesis, consequently
affecting flowering, fruiting, and even compromising the survival of the infested tree [3].

A native parasitic wasp belonging to genus Comperiella Howard (Hymenoptera: En-
cyrtidae) was discovered and subsequently found to effectively parasitize A. rigidus in
the outbreak areas from 2014 onwards. Preliminary findings and observations from field
and laboratory studies suggested the potential of the parasitoid for biological control [4].
Additionally, the encyrtid was not only the first native record in the Philippines for its
genus, but was also described as a new species, C. calauanica Barrion, Almarinez and Ama-
lin [5]. C. calauanica has been found to be very specific to A. rigidus, although mathematical
modeling and simulations by Palen et al. [6] assumed that the parasitoid may exhibit
a Holling type III functional response in which parasitism on an alternate host is necessary
for survival in the absence of the primary host. Management of A. rigidus outbreaks in
the Southern Tagalog region of Luzon Island as well as in Zamboanga Peninsula in Min-
danao has been reportedly a result of biological control by C. calauanica, owing to its high
host-specificity and putatively host density-dependent parasitism in the field [7].

Published information on the distribution of C. calauanica and A. rigidus in the Philip-
pines has been limited, and has so far been based either on field studies conducted in
A. rigidus outbreak areas [4,5], or on reports by local experts and agencies [3]. Distribution
modeling to identify or predict suitable habitats outside known outbreak areas has yet to
be explored for these two insect species. Predictive geographical modeling that is based
on the dependence of species and community distributions on environmental factors has
been viewed as an important means to assess the impact of natural and anthropogenic
environmental change on the distribution of organisms [8]. In addition, climate-based
ecological models can help in conservation efforts by providing information for resource
and habitat management [9]. Recently, distribution modeling has been used to predict areas
of high risk brought about by human infrastructures [10], as well as in the identification of
potential niche areas for habitation of species that may have an ecological service of medical
importance to humans [11]. Potential distributions of invasive species can also be predicted
with the aid of species distribution models (SDMs) [12,13]. Among the popular algorithms
used in modeling species distributions is the maximum entropy (Maxent) approach, which
requires presence-only data as an indication of the species’ occurrence. Models produced
using Maxent can be easily understood and interpreted, and provide valuable insights into
distribution and habitat suitability for a species [14,15], including under future conditions
possibly impacted by climate change [16].

Insect population distributions are largely affected by abiotic conditions in the en-
vironment, including climate. Particular species of insects have their own characteristic
tolerance to climatic factors, and changes in such factors can lead to potential changes in
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distribution [17]. In view of this, Maxent modeling has been used to predict the current
and potential distributions of invasive species [18], as well as those of a variety of forest
and agricultural insect pests which include: the large pine weevil, Hylobius abietis L., and
the horse-chestnut leaf miner, Cameraria ohridella Deschka and Dimič [19], and six tephritid
fruit flies [20] in Europe; three species of tephritid flies under genus Dacus Fabricius [21]
and the European grapevine moth, Lobesia botrana Denis and Schiffermüller, in China [22];
the ricaniid planthopper, Ricania shantungensis Chou and Lu in Korea [23,24]; the cotton
mealybug, Phenacoccus solenopsis Tinsley, in India [25] and worldwide [26]; and the invasive
European paper wasp, Polistes dominula Christ in the southern hemisphere [13].

The use of Maxent modeling as a tool in integrated pest management, particularly
in forecasting potential areas of new pest invasion relative to climate, has not yet been
explored very well in the Philippines, or in Southeast Asia. Hence, in view of the use of
C. calauanica for biological control of A. rigidus, the Maxent approach was employed in this
study to generate a bioclimate-based SDM for the prediction of either the presence of the
parasitoid or suitability of areas for its occurrence. This study provides a window into the
potential of bioclimate-based SDMs as tools for integrated pest management, especially
in view of climate change. The ability and utility of the distribution model of a highly
specific parasitoid to predict the potential distribution or areas of new invasion by its host
are likewise demonstrated.

2. Materials and Methods
2.1. Species Presence, Bioclimatic Variables, and Other Data

Presence-only data pertaining to occurrence of C. calauanica were derived from GPS
coordinates recorded from periodic field surveys conducted from April 2014 to June 2016 in
15 sampling points across three provinces (Batangas, Cavite, and Laguna) in the Southern
Tagalog region, and in 4 points in the town of Orani in Bataan in the Central region of Luzon
Island (Table 1). An additional coordinate was derived using Google Maps (accessible
from http://maps.google.com) to represent a point in Isabela City, Basilan Island where
sightings of C. calauanica were reported in January 2016 but were not actually covered
by our surveys. The occurrence points were encoded in spreadsheet form (with three
columns for species, longitude, and latitude in that order) using Microsoft Excel and saved
as a comma-separated values (CSV) file. A second set of presence-only data containing
13 occurrence points recorded from subsequent field surveys conducted in Zamboanga
City in April and August 2017 was encoded into another CSV file to provide the points for
model testing.

Bioclimatic data sets were downloaded from the WorldClim Global Climate Database [27].
These bioclimatic data were derived from global climate data interpolated by Hijmans et al. [28]
and represent current conditions. The downloaded raster data sets, in BIL format with 30
arc-seconds resolution, pertain to 19 variables (Table 2). For visualization of the SDM and
subsequent map construction, vector layers (in SHP format) of the administrative boundaries of
the Philippines were directly downloaded from the Philippine GIS Data Clearinghouse [29].

http://maps.google.com
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Table 1. Occurrence points of Comperiella calauanica recorded from April 2014 to January 2016.

Point
Coordinate (WGS 84)

Longitude (◦) Latitude (◦)

Batangas, Luzon
Malvar 121.1466 14.04903
Talisay 121.0107 14.09334

Tanauan 121.0913 14.09887
Sto. Tomas 121.2198 14.05746

Cavite, Luzon
Silang A 120.9729 14.21884
Silang B 121.0305 14.21385
Tagaytay 121.0002 14.17002

Laguna, Luzon
Calauan 121.2579 14.09737

Los Baños 121.2595 14.15006
Nagcarlan 121.4137 14.15893

Rizal 121.4109 14.06585
Candelaria 121.4513 13.92844
Alaminos 121.2481 14.06618

San Pablo A 121.2948 14.06757
San Pablo B 121.3333 14.05642

Bataan, Luzon
Orani A 120.4545 14.76979
Orani B 120.4546 14.76963
Orani C 120.4561 14.77067
Orani D 120.4558 14.77054

Basilan Island, Mindanao
Isabela City * 121.9947 6.587794

* Interpolated from Google Maps due to inability to be covered by surveys in the current study.

Table 2. Bioclimatic variables used in Maxent model development for Comperiella calauanica (after
Hijmans et al. [23]).

Bioclimatic Variable Variable Code

Annual mean temperature (◦C × 10) bio01
Mean diurnal range (◦C × 10) bio02

Isothermality bio03
Temperature seasonality bio04

Maximum temperature of the warmest month (◦C × 10) bio05
Minimum temperature of the coldest month (◦C × 10) bio06

Temperature annual range (◦C × 10) bio07
Mean temperature of the wettest quarter (◦C × 10) bio08
Mean temperature of the driest quarter (◦C × 10) bio09
Mean temperature of warmest quarter (◦C × 10) bio10
Mean temperature of coldest quarter (◦C × 10) bio11

Annual precipitation (mm) bio12
Precipitation of the wettest month (mm) bio13
Precipitation of the driest month (mm) bio14

Precipitation seasonality bio15
Precipitation of the wettest quarter (mm) bio16
Precipitation of the driest quarter (mm) bio17

Precipitation of the warmest quarter (mm) bio18
Precipitation of the coldest quarter (mm) bio19

2.2. Maxent Species Distribution Modeling for C. calauanica

Maxent Version 3.3.3k was used to develop the SDM for C. calauanica. The presence-
only data encoded in CSV served as the sample, while the downloaded bioclimatic data
sets in BIL format were used as the environmental layers for model construction. Among
the 20 presence records inputted into the algorithm, 18 were used for model training.
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Iterations of the optimization algorithm were set to 5000, and Jackknife test was included
in the algorithm to provide a measurement of the importance of each bioclimatic variable
in the model. Model testing was performed using the second set of 13 occurrence points
from 2017. Response curves were also generated for assessment of the variables. Two runs
of the same model were done so that the first output was set to express values logistically
and the second with values set to raw. The outputs in raster form (in ASC format) were
visualized, enhanced, and assessed in combination with other geospatial datasets through
Quantum GIS (QGIS) Versions 1.8.0 and 3.6.0.

2.3. Analysis and Assessment of the Species Distribution Model

The constructed Maxent model was evaluated using the result of the receiver operating
characteristic (ROC) analysis, with the obtained values for the area under the ROC curve
(AUC) serving as a measure of model performance. AUC values closer to 1.0 indicate better
model performance compared to those further from 1.0. The testing AUC is considered as
the true indicator of the predictive power of the model [30]. The bioclimatic variable with
the highest percentage contribution to the construction of the model was likewise noted. To
infer which among the bioclimatic variables the species appear to respond to most positively
(i.e., preferred conditions) and to which they respond most negatively (i.e., conditions to
which they appear to be most sensitive) in terms of their occurrence, the trends shown in the
response curves of a model were examined and compared with each other. Variables whose
response curves showed a clearly unidirectional upward or downward trend were considered
to be those with putatively greatest impact on potential distribution.

2.4. Validation of the Predicted Distribution of A. rigidus

A field survey for A. rigidus surveillance was conducted in Zamboanga City and in
Isabela City in Basilan Island in Western Mindanao initially from November 2016. Subse-
quent surveys were done in late January to early February 2017 for field release of mass-
reared C. calauanica, and in April 2017 for monitoring of establishment and spread of the
parasitoids. Samples of coconut fronds were randomly collected using the Rapid Ground
Assessment (RGA) method developed by the Philippine Coconut Authority (2018, un-
published). In this method, two to five trees were randomly selected in selected areas in
Zamboanga City and Isabela City with reports of A. rigidus infestation, and where mass-
reared C. calauanica were released as biological control agent [7]. Field surveillance was also
conducted in Tablas Island in the province of Romblon in January 2018 for confirmation
of received verbal reports of A. rigidus infestation. Presence of A. rigidus or C. calauanica
was confirmed by in situ inspection of samples for colonies of A. rigidus or occurrence
of adult and immature stages of C. calauanica among the scale colonies, or by ex situ in-
spection of unparasitized and parasitized scale colonies present on laboratory-processed
samples or high resolution scanned images of leaflet samples [7]. GPS coordinates of all
of the points where A. rigidus infestations were confirmed were recorded and encoded in
a CSV file for overlaying of these points on the map with the C. calauanica SDM in QGIS.
Incidence of points on areas predicted by the SDM to have non-zero probability (or at least
low-moderate suitability) was considered validation of the prediction of occurrence.

3. Results
3.1. Maxent Species Distribution Model for C. calauanica

The generated bioclimate-based distribution model for C. calauanica (Figure 1) predicts
hotspot areas in the provinces of Southern Luzon where the outbreak of A. rigidus between
2010 and 2015 most heavily devastated coconut plantations and stands: Batangas, Cavite,
and Laguna. It additionally predicts hotspots in the province of Bataan in Central Luzon.
These predicted hotspots were expected since all of the survey points in the study, which
were inputted into the modeling algorithm, were in those provinces. Areas with non-zero
habitat suitability were nonetheless predicted in other parts of the Philippine archipelago
that were outside the range of the survey points. Although the model in raw expression
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(Figure 1B) shows predictions of moderate to high habitat suitability throughout almost
the entire archipelago, areas whose predicted probabilities may be considered substantial
(between “low-moderate” and “high”) consistent with the logistic expression (Figure 1A)
include: several other parts of Luzon mainland; other islands in the Luzon island group,
notably Mindoro, Palawan, Marinduque, Romblon, and Masbate; Panay Island; Negros
Island; Cebu; Bohol; several parts of Mindanao mainland, particularly the southwestern
Zamboanga Peninsula; Basilan Island; and Sulu.
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Figure 1. Bioclimate-based species distribution model (SDM) for Comperiella calauanica in logistic (A) and raw (B) expressions
of calculated probabilities. Warmth of color indicates relative probability of occurrence or suitability of habitat.

3.2. Analysis and Assessment of the Species Distribution Model

The training AUC value of the C. calauanica SDM was 0.996, and the test AUC value
was 0.966 (standard deviation = 0.005). The C. calauanica SDM, therefore, has very high
predictive power based on these AUC values. Since C. calauanica has been found to be very
specific to its host and has been found to occur where its host is, its SDM may also have
considerable ability to predict the distribution of (or habitat suitability for) A. rigidus.

Precipitation seasonality (bio15) was the bioclimatic variable found to have the highest
relative contribution in the development of the model at 51.5%. Three variables, namely
mean temperature of the driest quarter (bio09), precipitation of the driest quarter (bio17), and
precipitation of the coldest quarter (bio19), were found to have clear unidirectional upward or
downward trends, and therefore potentially have the greatest impact on occurrence (Figure 2).
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3.3. Validation of the Predicted Distribution of A. Rigidus

In situ and ex situ examination of coconut leaflet samples collected during field
surveillance confirmed the occurrence of A. rigidus in areas outside mainland Luzon,
namely Zamboanga City, Isabela City in Basilan Island, and Tablas Island, Romblon
(Figure 3). A. rigidus without C. calauanica was confirmed in Zamboanga City (Figure 4A,B)
and in Tablas Island (Figure 4E,F), whereas C. calauanica was confirmed to parasitize
A. rigidus in Isabela City (Figure 4C,D). These points with confirmed occurrence coincided
with areas predicted with moderate to high habitat suitability by the SDM. The infestation
in Zamboanga City at the time of the initial surveillance was not yet at the outbreak
level, whereas an outbreak appeared to have already started in Tablas Island by the time
surveillance under this study was carried out.
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Figure 4. Aspidiotus rigidus-infested coconut trees with magnified view of scale colony samples
from: Zamboanga City (A,B); Isabela City, Basilan (C,D); and Tablas Island, Romblon (E,F). Black
arrows point to the characteristic distribution of eggs and egg skins along the pygidial ends of
mature female A. rigidus which can be used as basis to quickly distinguish this species from other
Aspidiotus spp. on coconut. White double arrow points to female Comperiella calauanica. Scale bars on
the photomicrographs approximate 1.0 mm.

4. Discussion

The coconut scale, A. rigidus, has emerged as a serious, invasive pest of coconut in
various parts of the Philippines. A few years after the diaspidid was first reported in the
country as the species which caused an outbreak in 2010 [3], the native encyrtid C. calauanica
was found to be a candidate biological control agent for pest management. We developed a
Maxent SDM primarily to predict habitat suitability for C. calauanica in case it were released
in the field for management of its host. The encyrtid has been found to be very specific only
to A. rigidus, although mathematical modeling with simulations assumed Holling type III
functional response [6] which would require C. calauanica to parasitize an alternate host in
the absence of A. rigidus. An alternate host has not been found so far, and the parasitoid is
so far known to parasitize only A. rigidus [7]. Hence, it is reasonable to view the SDM for
C. calauanica as a predictive model that may also apply to its primary host, especially in
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view of the confirmed occurrence of A. rigidus in all of the encyrtid’s 20 occurrence points
that served as input to the modeling algorithm.

The model’s training and test AUC values of 0.996 and 0.966, respectively, are higher
than 0.8, the value above which the AUC must be in order for the predictive ability of the
model to be considered “convincing” [31]. If the model is viewed as a habitat suitability
model for A. rigidus, the predicted areas with non-zero probabilities of occurrence could
therefore be considered as potential risk areas for new invasion. This is most especially
true for the peninsula of Zamboanga. Since A. rigidus is naturally wind-dispersed [3], the
likelihood of invasion by the pest coming from the nearby island of Basilan is very high.

We presented in Figure 1 the SDM both in logistic and raw expressions of probabili-
ties. It should be noted that raw values tend to be significantly lower than their logistic
equivalent. Given the spectral scale for qualitative interpretation of colors on the SDM, the
predicted probability value for a given point could be considered “high” when expressed
as raw, but only “moderate” when logistically expressed. This would explain the apparent
spectral discrepancy between the raw and logistic expressions of the same SDM.

Our finding of precipitation seasonality (bio15) as having the highest relative contri-
bution in model development suggests that distribution of C. calauanica or A. rigidus may
be influenced more by precipitation than by temperature, especially considering that the
Philippines is a tropical country, where temperatures throughout the year tend to vary
less than in temperate regions. In comparison, variables pertaining to temperature or its
variations were found to have significant influence on the predicted distributions of insect
pest species in temperate regions, namely Dacus spp. [21] and Lobesia botrana [22] in China,
Ricania shantungensis in Korea [24], Hylobius abietis and Cameraria ohridella in Europe [19],
and six species of tephritid fruit flies in Europe [20].

The response curves for mean temperature of the driest quarter (bio09), precipitation of
the driest quarter (bio 17), and precipitation of the coldest quarter (bio19) (Figure 2) indicate
that the probability of occurrence of C. calauanica or its primary host increases with higher
mean temperatures of the driest quarter, and decrease with higher precipitation during the
driest and during the coldest quarters of the year. These findings suggest that the parasitoid
or its host could be sensitive to precipitation, and may find habitats with higher mean
temperatures and relatively less precipitation to be more suitable. Furthermore, it could be
noted in the set of response curves that the predicted probability of occurrence remained
constant across changes in variables pertaining to temperature more than precipitation,
namely annual mean temperature (bio01), maximum temperature of the warmest month
(bio05), minimum temperature of the coldest month (bio06), and mean temperature of the
warmest quarter (bio10). If these response curves provide an approximation of the actual
ecophysiological responses of either C. calauanica or A. rigidus, then it is possible that habitat
suitability for either insect may be influenced more by precipitation than by temperature.

Presence points used in development of the C. calauanica SDM were limited only to
the known outbreak and infestation areas from 2014 to early 2016, and were limited to only
20 points, including one that was derived from Google Maps. Findings from field surveys
conducted in late 2016 up to 2018 validated these predictions as being, consistent with the
high predictive power of the SDM as indicated by the high training and test AUC values
computed by Maxent. Previously reported Maxent models for other insect species were
developed using between double to a little more than 460 times as many occurrence records
(Table 3). Nevertheless, the SDM developed for C. calauanica using relatively few points was
able to correctly predict the occurrence of A. rigidus in Zamboanga City and in Romblon,
and together with the parasitoid in Basilan Island. Moreover, infestations of A. rigidus
were confirmed in the Bicol Region in the southeastern part of Luzon Island [32,33] Maxent
has been recognized for being much less sensitive to sample size compared to other
distribution modeling algorithms, being able to produce useful, predictive models with as
few as 5 occurrence points [34,35]. To date and to our knowledge, this is the first field-based
validation of the occurrence or habitat suitability predicted by Maxent SDM for an insect
species that is important to agriculture or forestry.
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Table 3. Number of occurrence points used for Maxent modeling of selected insect species with
respective test AUC values.

Species
Number of Occurrence
Points Used in Maxent

Modeling
Test AUC Reference

Anastrepha fraterculus 49 0.76 * Godefroid et al. (2015)
A. obliqua 49 0.77 * Godefroid et al. (2015)

Bactrocera cucurbitae 49 0.91 * Godefroid et al. (2015)
B. oleae 49 0.97 * Godefroid et al. (2015)

Cameraria ohridella 152 0.97 Barredo et al. (2015)
Ceratitis fasciventris 49 0.82 * Godefroid et al. (2015)

Comperiella calauanica 20 0.966 Current study
Hylobius abietis 677 0.93 Barredo et al. (2015)
Lobesia botrana 95 0.970 * Lv et al. (2012)

Phenacoccus solenopsis 111 0.895 Fand et al. (2014)
P. solenopsis 201 0.92 Wei et al. (2017)

Polistes dominula 9246 0.982 * Howse et al. (2020)
Ricania shantungensis 43 0.79 Baek et al. (2019)

* Not indicated if reported AUC value refers to test AUC or training AUC.

5. Conclusions

Maxent was used to develop a bioclimate-based SDM for C. calauanica, the highly
specific endoparasitoid of the destructive coconut scale, A. rigidus, in the Philippines. The
SDM predicted moderate to high habitat suitability in areas in Luzon Island as well as
in other parts of the archipelago. Some of the hotspots were predicted in areas that were
not covered by field surveillance from 2014 to 2016, through which the limited number of
occurrence points used in model development was obtained. Despite the relatively small
sample size used for model development, the SDM was determined to have an excellent
predictive power as indicated by the very high training and test AUC values computed by
Maxent. Field surveys conducted from late 2016 to early 2017 confirmed the occurrence
of A. rigidus in Zamboanga City, as well as in Isabela City in Basilan Island in Western
Mindanao, where the SDM predicted hotspot areas. Subsequently, A. rigidus was also
confirmed through field surveillance in Tablas Island in Romblon, where moderate to high
habitat suitability was also predicted. These findings point to the utility of the C. calauanica
SDM in predicting habitat suitability or probability of occurrence of the coconut pest which
caused a devastating outbreak in the Southern Tagalog region of Luzon Island from 2010
to 2015. Bioclimate-based modeling may have a considerable potential as a tool for pest
invasion forecasting and GIS-guided pest surveillance. In addition to areas with “high”
occurrence probability, those with “low” to “moderate” predicted probability (or habitat
suitability) should be treated as potential areas for population establishment, especially if
preferable environmental conditions beyond bioclimate (e.g., presence of hosts) may occur
in such areas. Modeling based not only on current conditions, but also on projected future
conditions should be considered and further assessed.

Maxent modeling was also able to provide insights into possible responses of C. calauanica
or A. rigidus to climatic factors, particularly precipitation. We recommend that controlled as-
sessments be done to actually determine the ecophysiological responses of either C. calauanica
or A. rigidus to such climatic factors, and verify the Maxent-predicted responses. Sufficient
understanding of the ecophysiology of insects, supplemented by valuable information that
can be provided by bioclimate-based SDMs, may help in the development of pest invasion
risk maps, not only for A. rigidus but also for other species of importance to agriculture or
forestry in the Philippines and in neighboring Southeast Asian countries, especially in view of
climate change.
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