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• Bacterial diversity from the different
microbiomes was not significantly differ-
ent.

• ARGs and VFGs were significantly differ-
ent from different microbiomes.

• Aminoglycosides, tetracyclines, beta-
lactam, and macrolides were the main
ARGs.

• Drug resistance mechanisms were associ-
ated with carbapenem, MDR, and efflux
pump.

• Bacteroidales was involved in DNRA in
dairy lagoon effluent.
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Livestock manure, dairy lagoon effluent, and treated wastewater are known reservoirs of antibiotic resistance genes
(ARGs), antibiotic-resistant bacteria (ARB), and virulence factor genes (VFGs), and their application to agricultural
farmland could be a serious public health threat. However, their dissemination to agricultural lands and impact on im-
portant geochemical pathways such as the nitrogen (N) cycle have not been jointly explored. In this study, shotgun
metagenomic sequencing and analyseswere performed to examine the diversity and composition ofmicrobial commu-
nities, ARGs, VFGs, and N cycling genes in different livestock manure/lagoon and treated wastewater collected from
concentrated animal feeding operations (CAFOs) and a municipal wastewater treatment plant along the west coast
of the United States. Multivariate analysis showed that diversity indices of bacterial taxa from the different
microbiomes were not significantly different based on InvSimpson (P = 0.05), but differences in ARG mechanisms
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were observed between swine manure and other microbiome sources. Comparative resistome profiling showed that
ARGs in microbiome samples belonged to four core resistance classes: aminoglycosides (40–55 %), tetracyclines
(30–45%), beta-lactam-resistance (20–35%), macrolides (18–30%), and >50% of the VFGs that the 24 microbiomes
harbored were phyletically affiliated with two bacteria, Bacteroidetes fragilis and Enterobacter aerogenes. Network anal-
ysis based on Spearman correlation showed co-occurrence patterns between several genes such as transporter-gene
and regulator, efflux pump and involved-in-polymyxin- resistance, aminoglycoside, beta-lactam, and macrolide with
VFGs and bacterial taxa such as Firmicutes, Candidatus Themoplasmatota,Actinobacteria, and Bacteroidetes. Metabolic re-
construction of metagenome-assembled genome (MAGs) analysis showed that the most prevalent drug resistance
mechanisms were associated with carbapenem resistance, multidrug resistance (MDR), and efflux pump. Bacteroidales
was themain taxa involved in dissimilatory nitrate reduction (DNRA) in dairy lagoon effluent. This study demonstrates
that the dissemination of waste from these sources can increase the spread of ARGs, ARB, and VFGs into agricultural
lands, negatively impacting both soil and human health.
1. Introduction

The rise in antimicrobial resistance (AMR) is a serious public health
challenge worldwide (World Health Organization, 2014). The Center for
Disease Control and Prevention reported 35,000 deaths a year in the
United States, and 700,000 deaths a year worldwide related to AMR
(Center for Disease Control, 2013, 2019). The extensive use of antimicro-
bials in animal husbandry is a major driver of AMR selection and the emer-
gence of antimicrobial-resistant bacteria (ARBs) (World Health
Organization, 2014). In 2018 alone, approximately 11.6 million kg of anti-
microbials were used in the US for livestock industry (U. S. Food and Drug
Administration: Accessed on 8 Oct 2021). As a result of large stocks of anti-
microbials prescribed, the livestock and their environment are reservoirs of
antimicrobial resistance genes (ARGs) and ARBs (Kimera et al., 2020). The
animal source is a significant vector of AMR determinants (such as ARBs,
ARGs, VFGs, and MGEs) in the environment as well as a risk factor in the
dissemination of antimicrobials (Hendriksen et al., 2019). Virulence factor
genes are involved in invading, colonizing, and damaging host cells and
contributes to pathogenicity, by enhancing not only the infectivity of path-
ogenic bacteria but also by exacerbating antimicrobial resistance which in
turn restricts treatment options (de Nies et al., 2021). A recent review by
He et al. (2020) reports that the number of antibiotic resistance genes
(ARGs) is higher by three to five folds in swine and chicken waste than in
hospital and municipal waste (He et al., 2020). The abundance of ARGs
in cattle and fish waste was about the same to hospital and municipal
waste. Therefore, there are considerable differences in the abundance of
ARGs among different livestock, possibly due to varying antibiotic usage,
dosing patterns, and diet.

Antimicrobials used in humanmedicine also contribute to the selection of
ARGs in bacteria that can subsequently spread in the environment through
treated municipal wastewater effluents and biosolids. The collection of data
on AMR determinants in animal and human sources is crucial to effectively
combat resistant bacterial pathogens that may affect human health not only
through the food web of animal origin but also through direct contact with
the animal or animal husbandry environments (EF1SA, 2012, Walle et al.,
2019). Despite these concerns, about 57 million kg of antibiotics were used
globally in animal agriculture in 2010 (Van Boeckel et al., 2015).

Application of livestock manure and lagoon effluent to cropland is a
common practice to improve the fertility of soils for crop production all
over the world. This practice is widespread from developed to developing
countries. However, land-appliedmanure can come from different farm an-
imals ranging from cattle to poultry. Many studies have focused on antibi-
otic residues and antibiotic resistance genes in manures from individual
animal microbiomes subjected to intensive antibiotic use, such as cows,
swine, and chickens (Wichmann et al., 2014, Udikovic-Kolic., 2014, Zhu
et al., 2013 Ross and Topp, 2015, Noyes et al., 2016, Qian et al., 2016,
Eckstrom and Barlow, 2019). These studies suggested the potential for a
large amount of antibiotic resistant bacterial and antibiotic resistance
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genes to be disseminated from animal manure to agricultural soils (Durso
et al., 2012). It has been documented that soil is one of the environmental
reservoirs for antibiotic resistance genes accounting for about 30 % of
ARGs in the public domain (Nesme and Simonet, 2015). Both animal ma-
nure and dairy lagoon wastewater are widely used to recycle nutrients for
crop production. These may contain ARB and ARGs (Dungan et al., 2018;
Dungan and Bjorneberg, 2020) and chemicals of emerging concern (CEC)
such as antibiotics and other pharmaceutical compounds (Ashworth et al.,
2023). These compounds can impact human health, ecosystem functioning,
and metabolic activities such as the nitrogen (N) cycle (Semedo and Song,
2020, Semedo et al., 2018; Semedo and Song, 2022). N cycle is an
oxidation-reduction process which microbial communities transform inor-
ganic N using both assimilatory and dissimilatory pathways during nitrifi-
cation or denitrification processes. Therefore, it is critical to elucidate the
impact of ARGs on N-cycle pathways based on metagenomic analysis.

Application of manure fertilization to agricultural soil has resulted in a
bloom of ARGs even though the animals that produced the manure had not
been treated with antibiotics (Udikovic-Kolic et al., 2014). The most signif-
icant aspect of manure application to agricultural soil may be the “farm to
fork” effect where fresh produce that is eaten raw or minimally processed
is grown in such soil (Guron et al., 2019). The authors concluded that ma-
nure fertilization allowed for the enrichment of resident soil bacteria that
harbored ARGs. Additional work on antimicrobial-resistant bacterial popu-
lations and ARGs obtained from environments impacted by livestock and
municipal wastewater showed that antimicrobial resistance is awidespread
phenomenon. Higher diversity of antimicrobial resistance genes is present
in treated human waste discharged from municipal wastewater treatment
plants than in livestock environments (Agga et al., 2015).

In this study, we applied shotgun metagenomic sequencing to assess
bacteria and resistance gene diversity through different environmental ma-
trices. The matrices included swine manure, duck effluent, cattle manure,
beef manure, dairy manure, dairy lagoon effluent (DLE), DLE treated in
four high-rate algae ponds (HRAPs), and treated municipal wastewater
(TWW). Shotgun sequencing was used to determine bacterial diversity
and ARGs in these matrices as previously described (Bengtsson-Palme
et al., 2014; Rowe et al., 2016; Durso et al., 2012; Eckstrom and Barlow,
2019; Wichmann et al., 2014), and in food waste feeding and composting
on a poultry farm (Eckstrom and Barlow, 2019; Guron et al., 2019). Our
main objectives were to investigate the antibiotic resistome structure and
microbial community in different animal manure sources as potential reser-
voirs of AMR determinants, as well as determine the impact of ARGs on N
cycling potential in HRAPs that is used for the treatment of DLE. To accom-
plish these two goals, manure samples from different livestock and second-
ary treated municipal wastewater were collected to quantify ARGs,
microbial community, and water samples were collected from dairy lagoon
effluent (DLE) and four high-rate algae ponds (HRAPs) to quantify the effect
ofHRAPS on bacterial diversity and antibiotic resistance genes (ARGs). Fur-
ther analyses from these samples included assessing potential pathogenic
species and associated virulence factors from different samples to elucidate
the potential mechanisms of resistance transfer within the farm environ-
ment. We selected the different manure sources because they have
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significant differences in their diets. We hypothesized that ARGs andmicro-
bial communities should cluster according to the feeding habits of the ani-
mals, and that feeding habits of livestock can determine the biochemical
and biological properties of manures, and having a predictable effects on
microbial community composition and function. Hence manure profiles
could potentially be used to steer and manage manure application to agri-
cultural lands.
Fig. 1. Bacterial phyla from
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2. Materials and methods

2.1. Sample collection and processing

Manure samples were collected from dairies at California Polytechnics
University campus (San Luis Obispo, CA, USA) dairy farm. The dairy farm
was the source of seasonal samples from four high-rate algae ponds
different microbiomes.



Fig. 2.Reservoirs of virulence factor genes (VFGs). TheVFGs from totalmicrobiomes based on InvSimpson diversity test (panel A) and Chao1 diversity (panel B). Distribution
of VFGs in microbiome samples (panel C). Reservoirs of VFGs with heatmap representing the number of VFGs in individual samples (panels D&E), and Phyletic (taxonomic)
affiliations of the VFGs that were found in the individual samples (panel F).
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(HRAPs) and dairy lagoon effluent (DLE). The DLE was obtained when
dairy flush water was captured and pumped through a screen separator.
The liquid then flows into a lagoon and was stored, while the screened
5

solids were composted or used as bedding. New, fresh wastewater was
added daily to the lagoon from themilking parlor, andDLEwas also applied
to multiple crops throughout the year as needed to meet nutrient



Fig. 2 (continued).

A.M. Ibekwe et al. Science of the Total Environment 872 (2023) 162194
requirements. Four identical three-square meters high-rate algae ponds
(HRAP) were installed adjacent to the DLE at the 250-head dairy unit.
The HRAPs were paddle wheel-mixed raceway ponds operated at a 30-cm
depth, containing a volume of 970 l per reactor (Fig. S1). The reactors
were made of a wooden frame with a flexible plastic liner. A variable
low-speed motor was used to drive 6–blade plastic paddlewheels. The
6

ponds were operated as individual units to conduct experiments for multi-
ple conditions to determine nutrient removal rates in DLE at various DLE di-
lution rates and pond HRAPs, seasonally. Physical parameters of the units,
such as the relationship between paddle wheel revolutions per minute
(RPM) and channel water velocity, as well as cross sectional flow patterns
that are critical for developing bio-flocculating algal communities were
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analyzed (Ibekwe et al., 2016; Schwartz et al., 2021). The algae ponds were
fed a combination of screened dairy flush water and fresh water tomeet the
required experimental hydraulic retention time (HRT). Nutrients added to
the HRAPs came from either the DLE or water-soluble miracle grow fertil-
izer (N-P-K: 24–8-16). Nutrient additions were based on a target total avail-
able N, which ranged from 1.5 to 2.5 g of N per square meter per day fed to
the ponds. Ponds were operated in duplicates, and either received
80–100 % of the nutrients from DLE or 40–50 % of the nutrients from
DLE. The remainder was delivered from the miracle grow fertilizer which
was added as supplemental nutrients to determine if the units fed DLE
were inhibited due to the dark color of the units. Data were collected
from the outdoor pilot-scale HRAPs under steady-state conditions during
winter, spring, summer, and fall. Treated municipal wastewater effluent
was collected from a nearby wastewater treatment plant during the four
seasons. Additional manure samples were collected from California Poly-
technics University Pomona beef cattle. In addition, manure samples were
collected from a commercial beef and dairy farm (cattle) in southern Cali-
fornia, U.S.A, as well as swine manure and duck pond effluent from the
same farm. All samples were kept on ice and transported to the laboratory,
where the liquid effluent was processed within 24 h, and the manure solids
were stored at −80 °C until processing.

2.2. DNA extraction, library preparation, and shotgun metagenomic sequencing

DNA was extracted from samples using Qiagen PowerSoil Pro Kit
(Qiagen, Hilden, Germany) from manure samples and Qiagen DNeasy
PowerWater Sterivex Kit for water using sterivexfilter units. All extractions
followed the manufacturer's recommended protocol. After extraction, all
samples were stored at −20° C for quantification using nanodrop 2000
(Nanodrop-ND 2000, Wilmington DE) and Qubit 2.0 Fluorometer dsDNA
system (Thermo Fisher, Waltham, MA, USA).

Extracted genomic DNAwas sent to CosmosID (Rockville, MD, USA) for
sequencing as previously described (Hasan et al., 2014). Each genomic
DNA sample was normalized to a final concentration of about
0.5 ng μL−1 using a Biomek FX liquid handler (Beckman Coulter Life Sci-
ences, Brea, CA, United States) before library preparation. Libraries were
constructed using the Nextera XT Library Prep Kit (Illumina, San Diego,
CA, United States) and subjected to 150 bps paired-end sequencing using
an Illumina HiSeq 4000 (Illumina Inc., CA, USA) platform. The shotgun
7

metagenomic raw reads were analyzed by CosmosID metagenomic soft-
ware (CosmosID Inc., Rockville, MD) as previously described (Hasan
et al., 2014; Connelly et al., 2018; Kaleko et al., 2016; Zaouri et al., 2020;
Ponnusamy et al., 2016) to determine microbial community composition
and resistome. The unassembled quality-filtered sequences were mapped
to the CosmosID's curated GeneBook databases to elucidate (i) taxonomic
profile, (ii) antibiotic resistance genes (ARGs), and (iii) VFGs as described
below. Through comparative analysis between designated groups, various
statistical analysis results, such as beta-diversity and biomarker discovery,
were provided.

2.3. Metagenomic, virulence factor genes, and antibiotic resistance gene profiling

Unassembled sequencing reads were analyzed using CosmosID
metagenomic software (CosmosID Inc., Rockville, MD) as described
elsewhere (Hasan et al., 2014) to reveal associated microbial commu-
nity composition. Briefly, the system utilizes a high-performance data-
mining k-mer algorithm and highly curated dynamic comparator data-
bases that rapidly disambiguate millions of short reads into the discrete
genomes or genes engendering the sequences. The pipeline has two
comparators: the first consists of a pre-computation phase for reference
database and a per-sample computation. The input to the pre-
computation phase is a reference microbial genome, antibiotic resis-
tance and virulence gene database, and its output is phylogeny trees, to-
gether with sets of variable length k-mer fingerprints (biomarkers) that
are uniquely identified with distinct nodes, branches, and leaves of the
tree (Wood et al., 2019; Chalita et al., 2020; Yoon et al., 2019). The sec-
ond per-sample, computational phase searches millions of short se-
quence reads against the fingerprint sets. The resulting statistics are
analyzed to give fine-grain composition and relative abundance esti-
mates. The second comparator uses edit distance-scoring techniques to
compare a target genome or gene with a reference set (Li et al., 2009;
Langmead and Salzberg, 2012; Quinlan and Hall, 2010). The algorithm
provides similar functionality to BLAST but sacrifices some recall preci-
sion for a one or two order of magnitude processing gain. Overall classi-
fication precision is maintained through aggregation statistics.
Enhanced detection specificity is achieved by running the comparators
in sequence. The first comparator finds reads in which there is an
exact match with a k-mer uniquely identified with a reference genome
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or antibiotic resistance or virulence gene; the second comparator then
statistically scores the entire read against the reference to verify that
the read is indeed uniquely identified with that reference. For each sam-
ple the reads from a species are assigned to the strain with the highest
aggregation statistics. Specifically, virulence factor genes (VFGs) pro-
files were produced by using a pre-built bowtie2 (Langmead and
Salzberg, 2012) database composed of reference factors obtained from
the Virulence Factors of Pathogenic Bacteria (VFDB) database (Liu
et al., 2019). Each read of the metagenome sample was mapped against
these virulence factors using bowtie2 with the option, and the output
was then converted and sorted by samtools (Li et al., 2009). Finally,
for each virulence factor found, depth and coverage were calculated
using samtool's mpileup script. The Antibiotic resistance genes (ARGs)
profiles were produced by using a pre-built bowtie2 (Langmead and
Salzberg, 2012) database composed of NCBI's National Database of An-
tibiotic Resistant Organisms (NDARO, www.ncbi.nlm.nih.gov/
pathogens/antimicrobial-resistance/) reference genes. Each read of
the metagenome sample was mapped against these genes using
bowtie2, and the output was then converted and sorted by samtools
(Li et al., 2009). Finally, for each gene found, depth and coverage
were calculated by using samtool's mpileup script. Alpha diversity and
richness of ARGs were estimated with InvSimpson and Chao1, respec-
tively.

2.4. Metagenomic assembly and binning

Briefly, several strategies were employed to analyze the sequencing
data. The raw reads were quality filtered with BBMap v38.18
(Bushnell and Rood, 2014). The De novo assemblies were performed
with SPAdes v 3.14 (Bankevich et al., 2012). The scaffolds were
trimmed to a minimum length of 1500 bps with BBMap v38.18. The
per base coverage was calculated by mapping quality filtered reads
against the scaffolds using BBMap v38.18. MetaBAT1 v v1.0.18 subse-
quently used the mapped file to form bins from scaffolds (Kang et al.,
2015). CheckM v1.0.18 assessed the qualities of the formed bins with
a lineage-specific marker (Parks et al., 2015). The bins with >70 % com-
pleteness and <5 % error were designated as metagenome-assembled
genomes (MAGs) upon lineage-specific makers. The taxonomic affilia-
tions of the MAGs were delineated using GTDB-Tk v 1.3.0 (Chaumeil
et al., 2020).
8

2.5. Metabolic pathway assessment of MAGs

Prediction of protein and annotations for metagenome-assembled ge-
nomes (MAGs) was performed using Prokka v 1.14.6 (Seemann, 2014).
The predicted proteins for MAGs were parsed through Microbe-Annotator
(Ruiz-Perez et al., 2021) for comprehensive functional annotations. These
annotations were summarized in the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) modules (Kanehisa et al., 2016). Heatmap representing
completeness of each KEGG module for individual MAGs were constructed
using pheatmap package in R (Kolde and Kolde, 2018).

2.6. Statistical analysis

All statistical analyses were carried out for all microbiome samples and
thenwithmicrobiome samples along the treatment line from dairymanure,
dairy manure effluent, and HRAPs in duplicates. Statistical analyses were
conducted by the R studio version 4.0.5 (Kim et al., 2014). Nonparametric
Kruskal–Wallis test and the pairwise Wilcoxon rank-sum test were used to
assess the differences in microbial diversity, ARGs, VFGs profiles among
sample groups by the R statistical package. Alpha diversity was estimated
by the Inverse Simpson Diversity, Simpson, Shannon, and ARGs richness in-
dexes. Comparisons in alpha diversity estimates were carried out with the
Wilcoxon signed-rank test. The R package was used to perform clusters
based on the Bray–Curtis beta-diversity metrics of both the taxonomy pro-
file and ARG profile. Differences in the composition and structure of micro-
bial communities and ARGs profile between clusters were then evaluated
using the permutational multivariate analysis of variance test
(PERMANOVA) implemented in the “vegan” package in R. The partition
with the highest R2 value (coefficient of determination) was selected to rep-
resent the clustering structure. All statistical tests were considered signifi-
cant at a P-value <0.05. For network analysis, Spearman's correlation
coefficient (Rho > 0.6 and P < 0.05) was calculated with GraphPad Prism
9.0.0 (Dotmatrics, Boston, MA, USA) to determine the correlation between
ARGs, VFGs, and microbial taxa. These strong Spearman's rank correlation
coefficients were employed for network visualization using Gephi interac-
tive platform (Gephi version 0.9.6). To understand the interaction of
ARGs, VFGs, with microbial taxa in different settings, the network analyses
among (a) ARGs vs. VFGs and (b) ARGs vs. phylum levels were performed
for manure samples and for dairy lagoon-HRAPs treatments, separately.
The alpha diversity and richness were estimated with InvSimpson and

http://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/
http://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/


Fig. 3. Reservoirs of antibiotic resistance genes (ARGs) across the samples. ARGs across all microbiomes, with a total of 29 resistance mechanisms in all the samples. The
resistance to aminoglycoside was the most prevalent mechanism based on the corresponding ARGs presence in all the samples followed by tetracycline, Beta-lactam
resistance, and macrolide-lincosamide-streptogramin (MLS) (panel A).
Diversity of ARGs across samples based on InvSimpson diversity (panel B) and the Chao1 index of diversity (panel C).
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Chao1, respectively, using the Phyloseq package (McMurdie and Holmes,
2013). The alpha diversity for each sample type was tested by permuta-
tional ANOVA (PERMANOVA) using the adonis function of the vegan
10
package inR (Oksanen et al., 2017). A one-wayANOVAwas also performed
to test for significant differences sample dissimilarity (Bray-Curtis) between
sample types.
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3. Results

Shotgun sequencing produced ~2.5 Gbps (Giga base pairs) of raw reads
for all metagenomes (Table S1). After assembly, integrated, non-redundant
gene catalogs were built for all animal microbiome and wastewater sam-
ples. The results showed that the duck microbiome contained the highest
Fig. 4.Reservoirs of antibiotic resistant genes (ARGs) across the samples. ARGs present in
panel A: Aminoglycosides (40–55 %), panel B: Tetracyclines (30–45 %), panel C: Beta-
resistant group (MDR) and efflux pumps, and panel F: other additional and unclassified

12
number of reads out of all the samples (Table S1). The read statistics
range from about 79 M reads (dairy lagoon effluent) to about 140 M
reads (duck pond). Bacterial phyla from all the samples showed that
Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the most
dominant phyla in the samples (Fig. 1). Proteobacteria dominated all sam-
ples except swine microbiome that Firmicutes dominated. However, the
the samples belonged to a core resistome comprised of fourmain resistance classes:
Lactam-resistance (20–35 %), panel D: Macrolides (18–30 %), panel E: multi-drug
ARGs such as Fosfomycin, Bacitracin-resistance, Trimethoprim, Nitroimidazole.
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diversity index based on InvSimpson (Fig. S2A) and Chao1 test (Fig. S2B)
suggests that bacterial diversity was not significantly different from each
other (P = 0.05) but varied among various microbiome sources, with the
lowest diversity associated with cattle manure, dairy manure, and dairy la-
goon effluent (Fig. S2A).

3.1. Reservoirs of virulence factor genes (VFGs)

The quality-filtered reads from 24 samples (microbiomes) were individ-
ually mapped to the virulence factor gene database (CosmosID's curated
13
database) to identify reservoirs of VFGs. The animal manure from swine,
cattle, beef, dairy, and duck harbors many VFGs among their microbiomes.
The VFGs from swine manure microbiomes were significantly (P = 0.03)
higher in diversity than HRAPs and dairy lagoon effluent (0.048) based
on the InvSimpson diversity test (Fig. 2. A), but not significantly different
from other samples. Also, Chao1 diversity was significantly higher in
swinemanure samples (P=0.011) than HRAPs, but not any other samples
sources (Fig. 2B). A total of 24 and 28 VFGs in swine manure microbiome
were recorded (Fig. 2C), and this was followed with the summer dairy la-
goon effluent, duck pond, and dairy manure. One of the most dominant
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VFGs was bmhA with frequencies in summer DLE, swine manure, duck
pond, beef, cattle, and dairy manure. This VFG was not identified in any
of the HRAPs. Another VFG, tetQ, was identified in 18 out of the 24 sam-
ples, while tniA and tniB showed high occurrences in most of the samples.
Altogether, the frequency of VFGs was highest in all the animal samples.
14
More than 50 % of the VFGs that the 24 microbiomes harbor were phylet-
ically affiliated with two bacteria, Bacteroidetes fragilis and Enterobacter
aerogenes (Fig. 2 D–F). Other bacteria that contributed VFGs in the
microbiome included Campylobacter jejuni, Citrobacter freundii, Enterococcus
faecium and faecalis, Escherichia coli, and others, as shown in Fig. 2D–F.
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3.2. Occurrence and diversity of ARGs in metagenomes

A total of 177 ARGs were identified in the microbiome samples and
classified into 29 different resistance mechanisms from the different
metagenomes. These were associated with major resistance mecha-
nisms such as antibiotic efflux pump, MDR-efflux-pump, MDR-
regulators, transporter genes, antibiotic inactivation, antibiotic target
protection, antibiotic target alteration, etc. The 29 antibiotic resistance
mechanisms were found in all the samples. The resistance to aminogly-
coside was the most prevalent mechanism based on the corresponding
ARG presence in all the samples and their relative abundance, followed
by tetracycline, Beta-lactam resistance, and macrolide-lincosamide-
streptogramin (MLS) (Fig. 3A).

The ARG patterns were significantly different between swine manure
and wastewater effluent (P = 0.016), swine manure and HRAPs (P =
0.004), and swinemanure and dairy lagoon effluent (P=0.045). No signif-
icant differences were found among the rest of the samples (Fig. 3B) based
15
on the InvSimpson diversity test. Also, there were no significant differences
in ARG diversity in the HRAPs during the four seasons based on the
InvSimpson test. The Chao1 index of diversity (Fig. 3C) was used to test
for richness, and swine manure was significantly more diverse than duck
pond (P=0.010), WWTP (P=0.003), HRAPs (P=0.0001), and dairy la-
goon effluent (P = 0.004).

Of the 177 ARGs types frequently identified, 157, 68, 57, and 53 types
were detected in swine, cattle, dairy, and beef, respectively, after compara-
tive resistomeprofilingwas conducted. This data showed that ARGs present
in the samples belonged to a core resistome comprised of 4 main resistance
classes: aminoglycosides (40–55 %), tetracyclines (30–45 %), beta-lactam-
resistance (20–35 %), macrolides (18–30 %). The remaining major ARGs
were part of the multi-drug resistant group (MDR), and efflux pumps or
other additional and unclassified ARGs such as fosfomycin, bacitracin-
resistance, trimethoprim, nitroimidazole, and others (Fig. 4). The most
prevalent ARG class conferred resistance to aminoglycoside. The highest
proportion of aminoglycoside resistance genes was observed in swine
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microbiome, followed by the duck pond, cattle manure, and dairy manure
(Fig. 4A). In fact, aminoglycoside resistance genes were dominant in all
the livestock manure. Interestingly, fewer aminoglycoside resistance
genes were found in wastewater samples collected during the second sum-
mer of the sampling scheme. It should be noted that aminoglycosides
2024_branch gene, aadA1, aadA, aadA24, aadE, aph6, and aadA5 were
the most prevalent genes in all the samples (Fig. 4A).

The ARGs conferring resistance to tetracycline (a total of 30 ARG types)
were most prevalent in swine compared to other microbiomes, as noted
above for aminoglycosides. >60 % of tet genes were associated directly
with animal manure. The most prevalent tet genes were tet40, tet44, tetQ,
tetW, tetO, tetM, and tetX (Fig. 4B). On the contrary, the least detected tet
genes were tet 2043, tet32, tet39, tetA, tetB, tetK, and tetL. Most of the tet
genes were detected in animal manure compared to very low prevalence
in the HRAP fall and DLE winter samples. For the Beta-lactam resistance
genes identified in the samples, blaCTX, blaOXA, and blaTEM were the most
16
prevalent (Fig. 4C). In fact, blaOXA was present in almost all the samples.
Beta-lactam resistance genes were more evenly distributed in most of the
samples compared to tetracycline and aminoglycosides, which were more
prevalent in animal manure. Still, the highest frequencies of beta-lactam re-
sistances genes were found in the DLE fall sample and swine manure.
Macrolide has about 24 resistance gene types in all the microbiome, and
inuC was the most frequent gene type, followed by inuB, inuA, ermF, and
mefA (Fig. 4D). Most of the macrolides detected were associated with
swine manure. MDR and efflux pump were prevalent primarily in swine
and cattle manure (Fig. 4E). Other additional ARGs detected were sul1,
sul2, and floR genes that were also more prevalent in animal manure
(Fig. 4F).

Redundancy analysis (RDA) was performed to explore the correlation
between bacterial communities in 24 metagenome samples with (a) ARGs
abundance (Fig. 5A), and (b) virulence factor genes (Fig. 5B). Tables S2A
and S3A summarizes the weight of the variable that makes the canonical
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axis of the RDA in Fig. 5A and B. The results indicate that 28.7% (corrected
to variables in ARGs) of the variance in bacterial diversity can be explained
by ARGs. Among the ARGs only the Bacitracin resistance bacA gene (per-
mutations 999, p-value 0.005) has a significant correlation with the bacte-
rial community across the different samples (Table S2B). The RDA1 and
RDA2 explained 52.36 % and 22.17 % of the total variance, respectively.
The bacterial community and VFGs have a significant correlation (permuta-
tions 999, p-value 0.0036). After correction to the variable in VFGs,
94.87 % of the variance in the bacterial community can be explained
by VFGs. A total of 16 VFGs have a significant correlation with the bac-
terial community across 24 metagenome samples. Based on p-value the
VFGs were categorized into three groups, (a) bmhA, exc, IS942 (p-value
0.001), (b) mobA, rteA, tetQ, korB, tniC (P-value < 0.01), and (c) int,
mobA, mobC, kleE, kluA, qacE, tniA, tniB (P-value < 0.05). Table S3B
summarizes the variance and p-value of VFGs. The RDA1 and RDA2
explained 40.9 % and 25.07 % of the total variance in the bacterial
community.
17
3.3. Co-occurrence network analysis

Several properties for network analysis were calculated to describe
the complicated patterns of the inter-relationship among ARGs sub-
types, VFGs, and microbial taxa. Spearman's rank correlation coeffi-
cients were calculated among 29 ARG mechanisms and 38 VFGs for
both manure samples (Fig. 6A) and dairy lagoon- HRAPS treatment sam-
ples (Fig. 6B). After the filtration process (Rho > 0.6 and P-
value < 0.05), significant correlations were identified with network vi-
sualization which consists of 24 nodes (10 ARGs and 14 VFGs) and 69
edges for the manure (Fig. 7A) and 13 nodes (7 ARGs and 6 VFGs) and
18 edges for the dairy lagoon- HRAPS treatment (Fig. 7B). In the net-
work analysis, nodes represent the objects of interest which are ARGs
and VFGs. The nodes are colored based on ARGs and VFGs (green for
ARGs, orange for VFGs). The edges- the connection between nodes rep-
resents strong Spearman correlation (absolute value of rank coefficient
Rho > 0.6 and significant (P < 0.05)). Node size is weighted based on
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the number of connections. Edges are weighted according to the corre-
lation coefficient. Color of edge indicates a positive (blue) and negative
(red) correlation. The network connectivity of ARGs shows strong corre-
lation among several genes such as transporter-gene and regulator, ef-
flux pump and Involved-in -polymyxin- resistance, aminoglycoside
and beta-lactam, aminoglycoside and macrolide with VFGs
(Figs. 6&7). A possible reason for these co-occurrences of ARG subtypes
with VFGs may be that they are from the same microbial taxa or share
the same environment. The strongest correlations among VFGs and
ARGs were associated with aminoglycoside, Beta-lactam resistance,
and Macrolide.

In addition, the network analysis was conducted to determine the corre-
lation between ARGs and microbial taxa (Phyla) in manure (Fig. 7A) and
dairy lagoon- HRAPS treatment (Fig. 7B). Twenty-nine ARGs and 47
phyla were employed to generate Spearman's correlation ranks. The corre-
lations obtained after filtration (Rho> 0.6 and P-value< 0.05) were used as
inputs for Fig. 7A&B. The network (Fig. 7A) consisted of 49 nodes (15 ARGs
and 34 phyla) and 73 edges, while Fig. 7B comprised 19 nodes (6 ARGs and
13 phyla) and 14 edges. For the correlation between ARGs and VFGs, the
average number of edges per node was 5.75, 2.77 for Fig. 6 A&B and
2.98, 1.47 for Fig. 7 A&B. The average path lengths were 1.60, 3.00,
3.35, and 2.04 for the same network above. The clustering coefficients
were 0.67, 0.43, 0.0, and 0.0 while the modularity indexes were 0.358,
0.415, −0.403, −627.862 for these figures. These results indicated that
Fig. 6A&B have modular structures of highly interconnected subgroup
Fig. 5. Redundancy analysis of 24 microbiome. The redundancy analysis (RDA) antibio
(A). The redundancy analysis (RDA) virulence factor genes (VF), and bacterial commun
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(ARGs and VFGs), while Fig. 7A&B have more clusters of ARGs, and bacte-
rial phyla connected to multiple non-interconnected nodes.

3.4. Metagenome assembled genome (MAGs) analysis

A total of 2665 bins were extracted from 24 metagenomes. Quality as-
sessment of the bins with CheckM v1.0.18 yielded each bin's taxonomic
placement, completeness, and contamination. Data provided in the link
(https://github.com/asbhattacharjee/Animal_Microbiome/blob/main/
Bins_Extracted_From_All_Metagenomes.xlsx). One thousand and five bins
with contamination below 5 % and completeness >30 % were used to as-
sess taxonomic affiliation, gene prediction, and annotation. Five hundred
and forty-four out of 1005 bins had >70 % completeness. These 544 bins
were classified as metagenome-assembled genomes (MAGs). Metabolic re-
construction by prediction and functional annotation of genes for each
MAG revealed their role in each microbiome. Three hundred and forty-
four MAGs had genes that confer resistance to antibiotics, and KEGG classi-
fied some of these genes with drug resistance mechanisms. The most prev-
alent antibiotic resistance mechanism is presented in Fig. 8. KEGG
Metagenome assembled genome (MAGs) analysis showed that the most
prevalent drug resistance mechanisms were associated with carbapenem
resistance, MDR, and efflux pump AdeABC, which was present in almost
all the samples. This was followed by the bla resistance system in 13 sam-
ples present in the secondary treated wastewater effluent. Putting together
all the mechanisms, carbapenem, MDR, and efflux pump were the most
tic resistance genes (ARGs), and bacterial communities in 24 metagenome samples
ities in 24 metagenome samples (B).

https://github.com/asbhattacharjee/Animal_Microbiome/blob/main/Bins_Extracted_From_All_Metagenomes.xlsx
https://github.com/asbhattacharjee/Animal_Microbiome/blob/main/Bins_Extracted_From_All_Metagenomes.xlsx
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dominant mechanisms observed from these samples. The 344 MAGs have
genes that impact partial (minimum 60 % of the mechanism pathway)
and complete resistance to antibiotics. Some of these MAGs are probable
antibiotic-resistant bacteria (ARBs) in the 24 metagenomes.

3.5. Metabolic potential of high-quality MAGs in HRAP in N cycle

The metagenome-assembled genomes of bacterial species of the HRAP
microbiome were metabolically reconstructed for delineating their role in
nitrogen cycling. A total of 40 MAGs (>70 % completeness) and three
bins (>30 % completeness) with genes for nitrogen cycling were recovered
from ten metagenomes in the four HRAPs fed with DLE (Fig. 9). The N up-
take rate in the HRAP varied across seasons and peaked during summer
(Schwartz et al., 2021). During summer, Bacteroidales was involved in dis-
similatory nitrate reduction (DNRA) in the dairy lagoon. DNRA is the reduc-
tion of nitrate to ammonia by bacteria. With Bacteroidales as the only MAG
extracted from dairy lagoon metagenome during summer suggests the la-
goon might have had high ammonia concentrations (Schwartz et al.,
2021). Nitrification bacteria Flavobacterium and Pseudomonas fluorescens
were recovered from HRAP summer metagenomes. These bacteria have
the potential to oxidize ammonia to nitrite and to nitrate in the HRAP dur-
ing the process of nitrification. During fall, the dairy lagoon hosts bacteria,
Aeromonas Salmonicidia, Rubrivivax, and Pararheinheimera (Fig. 8) that are
involved in assimilatory nitrate reduction (ANR). These bacteria reduce ni-
trate to ammonia. The ammonia-rich dairy lagoon effluents are treated in
HRAPs. In fall the HRAP also harbors bacteria that are assimilatory nitrate
19
reducers, Saprospiraceae OLB9, Sediminibacterium, UBA2357 sp016790005,
JAGLBJ01, Tabrizicola, and Paludibacter. Both ANR and denitrification
lead to production of ammonia in HRAPs that can be used by algae. For
the winter and spring seasons, a similar trend was recorded where bacteria
involved in ANR and denitrificationwere identified in the dairy lagoon and
HRAPmicrobiome. These bacteria provide ammonia to algae in the HRAPs
for growth, N uptake, and efficient treatment. In addition, a denitrifier
Algoriphagus resides in the HRAP microbiome. A total of 19 MAGs in
Fig. 9 are antibiotic-resistant bacteria that are involved in nitrogen cycling.
However, RDA analysis of nitrogen cycle and antibiotic-resistant bacteria
showed no statistically significant effects of ARGs on nitrogen cycle in
this study, except some ARBs were involved in nitrogen cycling
(Fig. S4A&B).

4. Discussion

Some bacterial species in manure and wastewater carry ARGs and VFGs
that are disseminated through horizontal gene transfer to other bacteria
(He et al., 2020). In this study, Proteobacteria was the dominant phyla in
all the livestock andwastewater samples but one, swinemanure. Firmicutes
were dominant in swine manure. This agrees with Wan et al., 2021, which
showed Proteobacteria and Chloroflexi as the dominant phyla in sheep and
dairy manure, while Firmicutes dominated in swine and chicken manure.
Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, represented the
possible bacterial hosts carrying ARGs in most manure and manure-
amended soils (Forsberg et al., 2014; Su et al., 2015). These authors



Fig. 6. Network analysis revealing the co-occurrence patterns between antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in (A) Manure samples and
(B) Dairy Lagoon-HRAP treatments. The nodes are colored based on ARGs and VFGs (green for ARGs, orange for VFGs). A connection between nodes represents strong
Spearman correlation (absolute value of rank coefficient Rho > 0.6 and significant (P < 0.05)). Node size is weighted based on the number of connections. Edges are
weighted according to the correlation coefficient. Color of edge indicates a positive (blue) and negative (red) correlation.
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suggested that feeding methods can determine both chemical and biologi-
cal properties of livestock manure. However, diversity index based on
InvSimpson and Chao1 test suggest that bacterial diversity was not signifi-
cantly different from each other (P = 0.05) but varied among different
microbiome sources (Fig. 1). However, VFGs from swine manure was sig-
nificantly (P=0.03) higher in diversity thanHRAPs and dairy lagoon efflu-
ent (Fig. 2). Similarly, ARGs from swine manure was significantly different
from that of WWTP, HRAPs, and DLE (Fig. 3). The spread of ARB and ARGs
from livestock production and WWTP is a major threat to human and soil
health by facilitating the dissemination of ARGs to arable soil and edible
crops (Zalewska et al., 2021). However, both liquid and solid manure
from livestock production aremajor sources of nutrients to agricultural pro-
duction. Therefore, there is a need to find the balance of when and how to
use these materials for agricultural production and to determine drivers of
contaminations from these materials to the environment. Application of
manure and treated wastewater can stimulate the proliferation of other
soil bacterial that are not native to the soil before manure application
20
resulting in changes in soil resistome (Forsberg et al., 2014; Su et al.,
2015). This can affect the diversity and prevalence of ARGs (Chen et al.,
2016). Also, nutrient input from manure can stimulate the growth of the
soil bacterial community resulting in a bloom of some native antibiotic-
resistant bacteria (ARB) (Udikovic-Kolic et al., 2014; Hu et al., 2016).

Despite some of the negative impacts, manures continue to be regarded
as valuable agricultural resources, because they are important sources of
plant nutrients and are well known to improve soil physical and biological
properties through the addition of organic matter. That value may result
from improvements in soil quality, increases in yield, and replacement of
commercial nutrient required for crop production.With today's technology,
manure can be used more efficiently and, in more ways, than ever, which
should mitigate many of the environmental impacts that result when ma-
nure is treated as a waste. For instance, the bioconversion of animalmanure
to animal feed, fertilizer, or soil amendments, composting and
vermicomposting are some of the ways manure may became a useful prod-
uct. Furthermore, converting manure to biochar may be a feasible way to



Fig. 7. A:Network analysis revealing the co-occurrence patterns between antibiotic resistance gene (ARG) subtype and microbial taxa (Phylum) in (A) Manure samples and
(B) Dairy Lagoon-HRAP treatments. The nodes are colored based on ARGs and microbial taxa (green for ARGs, orange for Phylum). A connection between nodes represents
strong Spearman correlation (absolute value of rank coefficient Rho > 0.6 and significant (P < 0.05)). Node size is weighted based on the number of connections. Edges are
weighted according to the correlation coefficient. Color of edge indicates a positive (blue) and negative (red) correlation. B: Network analysis revealing the co-occurrence
patterns between ARG subtype and microbial taxa (Phylum) in (A) Manure samples and (B) Dairy Lagoon-HRAP treatments. The nodes are colored based on ARGs and
microbial taxa (green for ARGs, orange for Phylum). A connection between nodes represents strong Spearman correlation (absolute value of rank coefficient Rho > 0.6
and significant (P < 0.05)). Node size is weighted based on the number of connections. Edges are weighted according to the correlation coefficient. Color of edge
indicates a positive (blue) and negative (red) correlation.
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control ARG pollution caused by manure but still hold partial nutrients of
manure that contribute to soil quality improvement.

4.1. Co-occurrence between ARG subtypes, VFGs, and bacterial taxa

The most representative co-occurrent patterns between ARGs and
VFGs were among aminoglycoside, beta-lactam resistance, and
macrolide and five VFGs IS942, mobC, exc, bmhA, and int suggesting
that these ARGs and VFGs might be carried by the same bacterial spe-
cies, and these were positively correlated. The strong positive correla-
tion may suggest the presence of MGEs such as plasmids that can aid
in the transfer of ARGs and VFGs (Uhlemann et al., 2014; Wright
et al., 2015; Cloeckaert et al., 2017). MGEs are known to co-select for
ARGs and VFs in bacteria (Forsberg et al., 2014; Prieto et al., 2016), as
well as in the dissemination when equipped on the proper transfer ma-
chinery (Kaito et al., 2013; Penades et al., 2015). Since the recovery of
ARGs and VFGs from the dairy lagoon- HRAPs treatments were much
lower than from the manure samples, a smaller network between
ARGs and VFGs was observed (Fig. 6B). From this network, we observed
that the most connected nodes for ARGs were tetracycline, transporter-
gene, aminoglycoside, and Beta-lactam while the most connected node
for VFGs were tnA following by rteA and tetQ. Interestingly, one negative
21
correlation was observed between macrolide and qaE in this network.
The general observation was the overall reduction in ARGs and VFGs
in the algal based HRAPs system. This may be due to the low pH and
high temperature in the ponds and the effect of sunlight coupled with
high dissolved oxygen in the HRAPs that shifted dominant bacteria spe-
cies to non-pathogenic thermoacidophiles (Schwartz et al., 2021;
Ibekwe et al., 2016).

Network correlation between ARGs and bacterial taxa (Fig. 7A)
shows that Firmicutes, Candidatus Themoplasmatota, Actinobacteria, and
Bacteroidetes were strongly correlated with most of the ARG subtypes.
For example, Firmicutes was highly correlated with multiple ARGs in-
cluding Aminoglycoside, Beta-lactam, Efflux-pump, and Involved-in-
polymycin- resistance. This is consistent with our observation of the
high abundance of Firmicutes and antibiotic resistances in swine ma-
nures (Fig. 6A&B). Actinobacteria have strong correlation with
transporter-gene, regulator, and tetracycline. While other phyla such
as Proteobacteria, Elusimicrobia, Acidobacteria have negative correlations
with multiple ARG subtypes. For instance, Proteobacteria negatively cor-
related with Efflux-pump, Involved- in -polymycin-resistance, amino-
glycoside, and beta-lactam. Several ARGs such as beta-lactam
resistance and aminoglycoside had strong negative correlation with
multiple phyla. However, in the DLE treatment train (Fig. 7.B), the
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transporter-gene has a strong positive correlation for multiple taxa such
as Atribacteria, Tenericutes, Spirochaetes, Firmicutes, Latescibateria, and
Microgenomates. While chloramphenicol-exporter had a negative corre-
lation with variety of taxa.

4.2. Nitrogen cycling in Dairy Lagoon and HRAP

Manure from livestock is major sources of nitrogen and phosphorous to
agricultural land. On land application of manure, excess N and P leach from
soil into freshwater reservoirs and or percolate to groundwaters. Excess N
causes algal blooms in water reservoirs. High-rate algal ponds (HRAP)
can treatmanure-derived nutrients (N and P). In this study, bacterialmetab-
olism dominated the nutrient removal process in HRAP. The normalized
abundance of nrfA, the marker gene for dissimilatory nitrate reduction to
ammonium (DNRA), was approximately four times higher in HRAPs than
in the DLE. Regarding denitrification, which competes with DNRA for dis-
similatory nitrate/nitrite reduction, the trend was less clear. The HRAP is
a unique system for N removal fromDLE, and our data suggest that this pro-
cess may involve different nitrogen related enzymes and bacterial species.
During our study, Bacteroidaleswas involved in dissimilatory nitrate reduc-
tion (DNRA) in the HRAP because DNRA was higher. It has been reported
that denitrification rates may be inhibited by antibiotics treatments, and
synergistic inhibition effect has been observed for multiple antibiotics ex-
posure (Yin et al., 2017). These authors suggested that different classes of
antibiotics may affect N2O release rates differently. They concluded that
multiple antibiotics exposure may lead to stimulatory effect, and that the
abundances of denitrifying functional genes were inhibited by multiple an-
tibiotics exposure due to the antimicrobial properties, and different inhibi-
tion on denitrifiers were the major mechanism for the variations of N2O
release rates.
22
In conclusion, this study used shotgun metagenomics to analyze the
resistome of different livestock manure and secondary treated wastewa-
ter to determine the reservoirs of ARB, ARGs, and VFGs as well as to
track their dissemination from DLE through four high-rate algae ponds
(HRAPs) to quantify the effect of HRAPS on bacterial diversity and
ARGs. Significantly higher diversity and abundance of ARGs were ob-
served in swine manure, including those resistances to clinically critical
important antibiotics. Bacteroidetes fragilis and Enterobacter aerogenes
were the dominant hosts of VFGs, and co-occurrence patterns were be-
tween several genes such as transporter-gene and regulator, efflux
pump and involved-in-polymyxin- resistance, aminoglycoside, beta-
lactam, and macrolide with VFGs and bacterial taxa such as Firmicutes,
Candidatus Themoplasmatota, Actinobacteria, and Bacteroidetes. These
four phyla were the dominant hosts of most of the ARGs.
Metagenome-assembled genome (MAGs) analysis showed that the
most prevalent drug resistance mechanisms were associated with Carba-
penem resistance, MDR, and efflux pump. This study showed the abun-
dance of ARGs and VFGs in livestock manure which may serve as an
important reservoir for the dissemination of ARGs to the surrounding
farmlands and the environments.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.162194.
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Fig. 8.Antibiotic resistancemechanism ofmetagenome-assembled genomes (MAGs) of all samples. Thefigure only represents the number of antibiotic resistancemechanism
pathways that are >60 % complete with antibiotic resistance genes. MAGs are >70 % completion and <5 % contamination.
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Fig. 9. Nitrogen fixation genes in HRAPs and DLE. A total of 40 MAGs (>70 % completeness) and three bins (>30 % completeness) with genes for nitrogen cycling were
recovered from ten metagenomes in the four HRAPs fed with DLE. A, nutrient removal treatments. B, MAGs extracted during different seasons. C, Nitrogen cycling by
MAGs and completeness of MAGs involved in nitrogen cycling. MAGs highlighted by (*) are antibiotic-resistant bacteria that are involved in Nitrogen cycling.
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