
Contents lists available at ScienceDirect

Agricultural Water Management

journal homepage: www.elsevier.com/locate/agwat

Satellite-based NDVI crop coefficients and evapotranspiration with eddy
covariance validation for multiple durum wheat fields in the US Southwest
Andrew N. Frencha,*, Douglas J. Hunsakera, Charles A. Sanchezb, Mazin Saberb,
Juan Roberto Gonzalezb, Ray Andersonc

a USDA/ARS Maricopa, AZ, USA
b University of Arizona, Maricopa/Yuma, Tucson, USA
c USDA/ARS Riverside, CA, USA

A B S T R A C T

A three-year study was conducted to assess the ability of satellite-based vegetation index (VI) images to track evapotranspiration over wheat. While the ability of
using VIs, notably with the Normalized Difference Vegetation Index (NDVI), to track vegetation growth has been well established, the operational capability to
accurately estimate the crop coefficient (Kc) and crop evapotranspiration (ETc) at farm-scale from spaceborne platforms has not been widely studied. The study
evaluated wheat ET over 7 sites between 2016 and 2019 in Yuma and Maricopa, Arizona, USA estimated by using Sentinel 2 and Venus satellites to map NDVI time-
series for entire wheat cropping seasons, December to June. The basal crop coefficient (Kcb) was modeled by the NDVI time-series and the daily FAO56 reference ETo

was obtained by near-by weather network stations. Eddy covariance (EC) stations in each field observed ETc during the same seasonal periods, and applied irrigation
amounts were logged. The experiment found that remote sensing of NDVI and modeled Kcb accurately estimated Kc and crop ET during mid-season through
senescence in most cases. However, NDVI-based estimation performed less well during early season (<60 days after planting), when observed ETc was highly
variable due to frequent rain and irrigation at low crop cover. Mid-season Kc values observed for the seven wheat fields were from 0.92 to 1.14, and end of season Kc

values ranged from about 0.20 to 0.40, in close agreement to values reported elsewhere. Seasonal VI-based transpiration and ETc values ranged from 467 to 618 mm,
closely agreeing with seasonal EC data, which ranged 499–684 mm. Using the Venus sensor, the study in Maricopa in 2019 revealed that when augmented by a
background soil water balance model, water stressed wheat can be detected mid-season with NDVI. This capability is specifically due to the sensor’s ability to provide
well-calibrated images every 2 days. Findings from this study will help farmers, irrigators, and water managers use and understand the capabilities of visible near
infrared remote sensing to track ETc from space.

1. Introduction

Since publication of the FAO-56 crop water requirements compu-
tational procedures (Allen et al., 1998), much research has focused on
estimating crop evapotranspiration (ETc) with real-time single (Kc) or
basal crop coefficients (Kcb) based on vegetation index (VI) data, as
applied with the FAO56 Penman-Monteith (PeM) reference-crop eva-
potranspiration equation (ETo). For many annual field crops, certain
biophysical parameters, such as crop-cover fraction (fc), plant density,
and leaf area index (LAI), have been closely monitored in time and
space by remotely-sensed vegetation indices (Wiegand et al., 1991;
Pinter et al., 2003; Duchemin et al., 2006; Hunsaker et al., 2007). For
vegetation monitoring, a widely used VI is the normalized difference
ratio of the near infrared (NIR) and red reflectance bands, or normal-
ized difference vegetation index (NDVI; Glenn et al., 2011). Similarities
between the time-series patterns of VIs and crop coefficients also occur,
as noted decades ago by Jackson et al. (1980). Early studies by Bausch
and Neale (1989) and Bausch (1995) developed methods to improve

ETc estimation for corn with the use of real-time VI-based Kcb, they
denoted as surrogate crop coefficients. Bausch (1995) incorporated
observed VI-based Kcb for corn within an existing weather-based irri-
gation scheduling model and reported reduced irrigation applications
and better timing of irrigation over the model that used empirically
derived time-based crop coefficients.

One of the very first studies to directly implement remotely sensed
VI data within the FAO56 dual crop coefficient approach was conducted
for cotton by Hunsaker et al. (2003) in Arizona, United States (US).
They derived a calibration model to predict P-M-based Kcb with NDVI
measured 2–3 times weekly using a pole-mounted radiometer over a
clay loam soil. However, due to the influence of soil background on
NDVI, especially soil color or brightness when fc is low, that Kcb-NDVI
calibration model did not transfer well when used in cotton grown in
the same climate but on a sandy loam soil (Hunsaker et al., 2005a). The
soil-adjusted vegetation index (SAVI) was developed by Huete (1988)
to minimize soil brightness effects on spectral indices in the NIR and red
wavelengths. Some research studies imply that SAVI may be a more
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preferable VI to model crop coefficients (Bausch, 1995; Jayanthi et al.,
2007; Gonzalez-Dugo et al., 2009). While the majority of VI-Kcb studies
to date have used NDVI, many have indirectly accounted for differences
in soil background by scaling observed NDVI and Kcb for crops between
minimum values, at dry bare soil (NDVImin and Kcb min, usually taken as
0.15), and maximum values, at effective full cover (NDVImax and Kcb

max). Campos et al. (2010) compared scaled NDVI and SAVI calibration
models to predict measured Kcb in irrigated grapes and found slightly
better correlation using NDVI. Commonly, a linear relationship be-
tween Kcb and NDVI is assumed, as by Neale et al. (1989), Lopez-Urrea
et al. (2009), Campos et al. (2010); Sánchez et al. (2012), and
Rozenstein et al. (2018), and the calibration takes the form, Kcb =
b*NDVI ± a, where a and b are the regression coefficients and NDVI is
the scaled NDVI. Differently, Er-Raki et al. (2007, 2010), in Morocco,
utilized a wheat Kcb curve using scaled NDVI as an exponential function
based on LAI, thus, allowing Kcb to increase with NDVI in a curvilinear
manner. González-Dugo and Mateos (2008) later developed a more
generalized VI-based exponential model for this concept. A compre-
hensive listing of the many types of Kc-VI and Kcb-VI relationships de-
veloped for crops is provided by Pôças et al. (2020, in this Special
Issue).

Assessing three-years of Maricopa, Arizona wheat field studies,
Hunsaker et al. (2005b), used observed NDVI data to develop a Kcb

model. The NDVI values were normalized between zero, for dry bare
soil (NDVImin), and 1.0, for average maximum NDVI at full cover
(NDVImax):

NDVIn = [NDVI – NDVImin] / [NDVImax – NDVImin] (1)

where NDVIn is the normalized NDVI and NDVI is the field-observed
value. Weekly measurements of wheat ET in those studies were ob-
tained using a soil water balance (SWB), in which weekly soil water
content was measured in well-watered drip-irrigated plots using neu-
tron probe and time domain reflectometry. Average weekly values of
the Kcb were calculated by the FAO56 dual approach based on the
FAO56 P-M ETo equation using meteorological parameters measured by
the University of Arizona weather station at Maricopa. The weekly Kcb

values were paired with average weekly NDVIn measured with a pole-

mounted radiometer above the plots. In that clay loam soil field, the
average observed NDVImin by the radiometer varied from 0.155 to
0.191 for the three years, whereas the average maximum NDVI only
varied from 0.922 to 0.927. The relationship between Kcb and NDVIn
was found to be described by a cubic regression model with a coeffi-
cient of determination (r2) of 0.90, n = 232 (Hunsaker et al., 2005b).
The model was then applied in real-time irrigation scheduling studies
for two years with the same wheat variety at a nearby site in Maricopa
that had sandy loam texture at the soil surface and sandy clay loam
texture at deeper layers (Hunsaker et al., 2007). Using the same
radiometer methods as in the clay loam studies, NDVImin values mea-
sured for dry bare soil were on the order of 0.10−0.11 for the sandy
loam, while NDVImax was assumed as 0.925 (based on that observed in
the clay loam). For real-time use in irrigation scheduling, prior
knowledge of NDVImax for a crop is needed in order to properly scale
the time-series NDVIn to Kcb. However, when different platforms and
sensors are used for NDVI, NDVImax values for a given crop will likely
vary depending on the sensor configuration and atmospheric correction
techniques used. Thus, empirical observations of NDVImax for the given
crop and sensor system are recommended before the VI method is used
in irrigation scheduling. During the first year in the study by Hunsaker
et al. (2007), the assumed NDVImax was very close to that measured at
full cover (0.92−0.93) for well-watered and -fertilized wheat and Kcb

wheat ET predictions versus measured, as derived from the SWB, were
highly correlated (r2 = 0.94−0.95). Although measured NDVImax was
lower in the second year (0.89−0.91) due to nitrogen stress during
crop development, the ETc predicted by the Kcb-NDVIn model remained
highly correlated with the measured ETc (r2 = 0.88−0.94), indicating
that the predictions of Kcb based on NDVIn were appropriate for the
non-optimal crop conditions as well as for optimal conditions
(Hunsaker et al., 2007). With the abundance of Kcb-NDVIn data col-
lected in the sandy loam wheat studies, the data were combined with
the data from the clay loam field to upgrade the wheat cubic regression
model (Fig. 1). A comparison of the derived cubic model with a linear
model for wheat shows that Kcb varies with NDVIn in three phases. For
low NDVIn, between 0 and 0.4 (emergence to about 25% cover), Kcb

increases linearly with NDVIn. As crop development continues (i.e., as

Fig. 1. Measured wheat basal crop coefficient (Kcb) as a function of observed normalized difference vegetation index (NDVI), normalized between 0, NDVImin at dry
bare dry soil, and 1, NDVImax at full cover and resultant curves of Kcb by NDVIn for cubic and linear regression models.
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NDVIn goes from 0.40 to 0.90), the rate increase of Kcb is less than the
linear model. This occurs as fc increases from 25% to about 75%. In the
third phase, between NDVIn from 0.90 to 1.0 (75–100% cover), Kcb

increases more rapidly than NDVIn. These different trends in Kcb versus
NDVIn for wheat could also be modeled by three segmented linear re-
gression lines. However, the third-order regression model captures the
variations well and is easier to compute. The regression coefficients and

related statistics for the cubic model of Fig. 1 are given in Table 1.
The subject for this VI study, durum wheat (Triticum turgidum ssp.

durum Desf.), also called pasta wheat, is one of the most important
crops grown worldwide (Kabbaj et al., 2017). It is also one of the pri-
mary crops produced in irrigated desert regions of the southwestern US,
including Arizona and California. Desert durum is grown as a winter
crop in the state of Arizona, which has become the third largest pro-
ducer of durum wheat in the US (Mon et al., 2016). Yuma County, si-
tuated in the low desert of southwestern Arizona, is one of the world’s
foremost producers of lettuce and other winter vegetables. However,
cultivation practices in the area are dominated by rotational cropping
systems, where a winter vegetable crop is followed by durum wheat,
melon, or short-season cotton (Taylor and Koo, 2015). Desert durum, in
particular, when grown in rotation, plays an important secondary role
in providing soil health benefits, including maintaining soil salinity at
optimal levels for the next vegetable crop.

A continuous goal in Yuma and other irrigated desert areas in
Arizona is obtaining high crop productivity and reducing water use
through improved management practices. Most of the gains in in-
creased irrigation water use efficiencies in recent years for Yuma have

Table 1
Regression coefficients and statistics for wheat basal crop coefficient (Kcb) as a
cubic function of the normalized, normalized difference vegetation index
(NDVIn) using data from Hunsaker et al. (2005 and 2007).

Regression coefficientsa Regression statisticsb

a0 a1 a2 a3 r2 se n
0.176 1.325 −1.466 1.146 0.924 0.097 991

a Kcb = a0 + a1X + a2X2 + a3X3, where X is NDVIn.
b r2 is the coefficient of determination, se is the standard error of the esti-

mated Kcb, and n is the sample size.

Fig. 2. Arizona wheat site locations. Synoptic view of southern Arizona, with Yuma and Maricopa sites, separated by ∼240 km, are outlined in black (A). Regional
view of Yuma, ∼35 km x 35 km, with false-color NDVI from Sentinel 2 (B) Red colors indicate dense green vegetation, yellow, green, and blue colors indicate sparse
cover. Regional view of Maricopa, district width ∼18 km, with false-color NDVI from Venus (C). Site specific maps are shown for Yuma S1, S2, S5, S6, and S8, fields
360 m east-west (D), Yuma site J118, 180 m east-west (E), and Maricopa H borders 5-12, total width 520 m east-west (F). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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been attributed to on-farm infrastructure improvements, precision land
leveling, and minimizing crop production during the high evaporative
demand months of summer (Taylor and Koo, 2015). Improved irriga-
tion scheduling methods could also play an important role in boosting
water use efficiencies. While most growers are aware of crop coefficient
methods for irrigation scheduling, they are not widely used. In addition,
the available wheat crop coefficients for Yuma and other Arizona
counties, which were developed years ago, need to be re-evaluated and
updated. Nevertheless, most growers of durum wheat in these areas are
highly experienced irrigators, though usually relying primarily on soil
shovel turning to estimate soil water depletion (Taylor and Koo, 2015).

To date, operational applications of Kcb-VI approaches for crop ET
monitoring and irrigation management in the US Southwest have not
been extended much beyond research studies. Thus, the derived Kcb-
NDVIn model for wheat described in Table 1 has not yet been evaluated
at the farm scale. But the rising number of public earth observation
systems, particularly the Sentinel 2 mission and the new microsatellite,
Venus (theia.cnes.fr), makes an evaluation in irrigated fields feasible.
Sentinel 2 data can provide an NDVI time-series at high temporal (every
five days) and spatial resolution (≈10 m; Transon et al., 2018;
Rozenstein et al., 2018). Venus has similar spectral characteristics to
Sentinel 2 but with 5 m nadir resolution, and 2-day, constant view-
angle acquisitions. Therefore, to provide a starting point towards im-
proved irrigation scheduling for durum wheat in the US Southwest,
studies were conducted to evaluate the Kcb-NDVIn model in seven
commercial durum wheat farms, six in Yuma County and one at Mar-
icopa in Pinal County, Arizona. Study objectives were (1) to assess
model-estimated crop transpiration (Tc) and crop ET using Sentinel 2
and Venus NDVI time-series data in comparison with measured daily
crop ET obtained by eddy covariance (EC) towers installed at each field
site; (2) to derive single Kc values for durum wheat based on measured
ETc and the FAO56 P-M ETo; and (3) to evaluate cumulative seasonal
irrigation applied at each site with respect to the measured and esti-
mated seasonal ETc.

2. Methods

2.1. Study sites

The durum wheat sites were in Southern Arizona (Fig. 2A), hot and
arid lands receiving little rainfall, typically ranging from 80 mm to
200 mm annually from western to central parts of the State. This means
that irrigation is required for all crop production. Most irrigation is
applied by gravity in level basins and borders. The study included 6
commercial sites in the Yuma region (Fig. 2B) and one commercial site
in the Maricopa region (Fig. 2C), 81,000 and 23,800 irrigated hectares,
respectively. All were level-basin irrigated. In recent years the Yuma
district has used approximately 108,000 ha-m of Colorado River water.
The Maricopa-Stanfield Irrigation District uses approximately 37,000
ha-m of co-mingled ground and Colorado River water.

The six sites in Yuma were on private farms, denoted as S1, S2, S5,
S6, S8, J118 (Fig. 2D and E). The seventh site in Maricopa was also on a
private farm (H8, Fig. 2E). General site descriptions are shown in
Table 2, providing planting/harvest dates and length of run for the ir-
rigation borders. Reference weather data were taken from the AZMET
system (cals.arizona.edu/AZMET), which provides data over grass re-
ference surfaces. Table 3 shows the average monthly data for weather
parameters for the Gila North Yuma AZMET station, located approxi-
mately 8–12 km north of the Yuma sites. Table 4 provides the average
weather data for the Maricopa Agricultural Center station, about 8 km
east of the H8 site. Soil texture fractions were measured from samples
taken in the top 0.15 m soil depth at each site (Table 5) using a Laser
Diffraction Particle Size Analyzer. All sites were part of crop rotations,
with double cropping of leafy greens and wheat common for Yuma
fields.

2.2. Evapotranspiration measurements

The field schedule for evapotranspiration measurements consisted
of eddy covariance stations as listed in Table 6. The station components
(Table 7) were predominantly manufactured by Campbell Scientific
(Logan, UT), but also included LI−COR (Lincoln, NE) infrared gas
analyzers, Kipp & Zonen net radiometers (Delft, Netherlands), Hukse-
flux soil heat flux plates (Delft, Netherlands), and Vaisala HMP45
temperature humidity probes (Vantaa, Finland). Five unique stations
were used for the study, 3 of which were new instruments (2017).
Station contributors were University of Arizona/YCEDA (1), USDA/ARS
Maricopa (2), and NASA/JPL (2). All loggers (CR3000, Campbell Sci-
entific) and covariance sensors were calibrated by the manufacturer in
2016 and 2017. Zero and span of infrared gas analyzers (IRGA) were
done in July 2017 and again in July 2018. Stations were deployed
immediately after planting, then removed just prior to harvest. Occa-
sionally stations had to be moved mid-season to allow farm equipment
access for spray applications. In these instances, the EC and net radio-
meters were temporarily relocated while the soil heat flux plates re-
mained in place. On re-entry, the sensors were replaced within a few cm
of their original locations. Each station included an EC, IRGA, net
radiometer, at least two soil heat flux plates, logger, cell modem, and
solar power supply. ECs were set horizontally- all sites were flat and
close to level- and mounted approximately 1 m above the top of canopy.
Net radiometers were deployed 1 m over the canopy and facing due
south. With two exceptions two soil heat flux plates were deployed
adjacent (i.e.- offset 1 m east and west) to the station’s net radiometer
and at 5 cm depths. The exceptions were at S8 and J188 sites where
four plates were deployed. To estimate heat storage above the plates,
two pairs of thermocouples were installed above each plate. One soil
moisture sensor, CS616 (Campbell Scientific), was installed midway
between plates at 5 cm depth. Note however that the net storage at
daily time steps was small and was not included in the energy budgets.
Each EC assembly was raised during the season as needed to maintain a
minimum 1 m offset. EC azimuths were set due south at S8 and J118,
and due west at S1, S2, S5, S6, and H8 to reduce instances of self-
obstructed airflow: predominant winds were from the western half of
the compass at Yuma and from the south at Maricopa.

Each station collected multiple micrometeorological observations
(∼108 variables per time step) at 20 Hz sample rates, configured under
Campbell Scientific’s EasyFlux DL ™ (Logan, UT) program1 to allow
continuous data measurements during the cropping cycle. Simulta-
neously 30-min block-averaged fluxes, including the Webb-Pearman-
Leuning (Webb et al., 1980) corrections were stored. Computation of
30-min evapotranspiration (ET) estimates used WPL fluxes. EC stations,
with few exceptions, were visited weekly to inspect horizontal and
azimuthal alignment, cleared of bird debris, and general operation.
Station functioning was monitored daily via cell-phone modem links.

Table 2
Planting and harvest dates and length of irrigation borders for seven monitored
durum wheat field sites in Yuma and Maricopa, Arizona*.

Site Year Location Plant date Harvest date Length of run (m)

S8 2016−17 Yuma Dec. 18 May 5 381
J118 2017 Yuma Jan. 11 Jun. 1 273
S1 2018 Yuma Jan. 5 May 31 392
S2 2018 Yuma Jan. 6 May 31 385
S5 2017−18 Yuma Dec. 15 Jun. 1 382
S6 2018 Yuma Jan. 24 Jun. 1 383
H8 2018−19 Maricopa Dec. 18 May 25 360

* All wheat fields were irrigated in borders (flood).

1 Mention of tradenames and commercial products is for reader convenience
and does not imply endorsement. USDA does not endorse or recommend pro-
ducts.
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Data were stored on Compact Flash (CF) cards that were changed ap-
proximately every 2 weeks.

Subsequent processing of fluxes used R scripts to remove data spikes
and fill data gaps. Spike removal followed the methodology described
by Vickers and Mahrt, 1996. Gap filling was needed to avoid under-

estimation of ET. The nature of the gaps varied for station and site and,
except for station relocations, were unpredictable. Sometimes the IRGA
would fail but not the sonic, other times both failed, and on still other
occasions inexplicably self-resolved. Gap-filling techniques have been
reported in reviewed in literature, e.g., 15 of them by Moffat et al.
(2007). The best approach would be to adopt one or more of those, but
time did not allow testing and implementation for all sensor and data
collection maladies. Hence linear interpolation of relevant and co-var-
iant variables was employed where feasible, meaning that fluxes were
reconstructed from fundamental observables such as wind speed, air
temperature and humidity if available from ancillary instruments. For

example, when the IRGA failed but not the sonic, H fluxes were esti-
mated by computing air density and heat capacity via independent
slow-response temperature humidity sensors. For long-duration time
gaps, more than 2 h, linear interpolation to 30-minute time steps was
not done and an alternative strategy had to be used. In these cases, gap

Table 3
Monthly average weather parameters; maximum (Tmax) and minimum daily (Tmin) temperatures, minimum relative humidity (RHmin), solar radiation, 2-meter wind
speed, growing degree day (GDD), reference evapotranspiration (ETo), and monthly total rain as recorded from December 2016 through May 2018 at the Gila North
Yuma AZMET station.

Monthly daily means Monthly total

Year Month Tmax
( ͦ C)

Tmin
( ͦ C)

RHmin
(%)

Sol. Rad. (MJ/m2) 2-m wind (m/s) GDD
( ͦ C-d)

ETo
(mm/d)

Rain
(mm)

2016 Dec. 20.1 5.9 31.1 11.1 1.9 8.4 2.2 19.3
2017 Jan. 19.6 5.6 33.6 11.6 2.1 8.2 2.4 6.6

Feb. 24.0 8.9 29.5 15.0 1.8 12.0 3.0 34.0
Mar. 29.4 10.4 15.1 21.9 1.9 15.2 4.9 3.0
April 31.6 12.3 11.4 26.1 2.0 17.0 6.3 0.0
May 33.9 14.3 14.8 28.7 1.9 18.7 6.9 3.0
Dec. 22.2 4.9 15.5 12.3 2.0 9.2 2.8 0.0

2018 Jan. 23.8 6.2 19.9 13.2 1.8 10.6 2.9 4.0
Feb. 23.2 4.9 17.7 16.7 1.7 9.7 3.2 0.0
Mar. 26.3 9.0 14.9 20.5 1.9 13.2 4.5 0.0
April 32.0 12.6 11.3 25.5 2.0 17.5 6.3 0.0
May 33.6 13.9 13.7 29.6 1.8 18.7 6.9 0.0

Table 4
Monthly average weather parameters; maximum (Tmax) and minimum daily (Tmin) temperatures, minimum relative humidity (RHmin), solar radiation, 2-meter wind
speed, growing degree day (GDD), and reference evapotranspiration (ETo), and monthly total rain as recorded from December 2018 through May 2019 at the
Maricopa Agricultural Center AZMET station.

Monthly daily means Monthly total

Year Month Tmax
( ͦ C)

Tmin
( ͦ C)

RHmin
(%)

Sol. Rad. (MJ/m2) 2-m wind (m/s) GDD
( ͦ C-d)

ETo
(mm/d)

Rain
(mm)

2018 Dec. 18.6 2.2 29.3 10.6 1.3 6.3 1.8 14.0
2019 Jan. 18.7 2.7 32.5 12.4 1.3 6.6 1.9 13.0

Feb. 16.8 3.5 31.3 14.4 1.8 6.3 2.4 63.0
Mar. 24.5 7.4 19.2 20.4 1.9 11.5 4.2 7.0
April 30.5 12.8 12.6 25.7 2.3 16.9 6.5 0.0
May 30.6 14.2 13.6 27.7 2.4 17.8 7.0 0.0

Table 5
Soil texture characteristics for the 0-0.15 m soil depth measured at the seven
monitored durum wheat field sites in Yuma and Maricopa, Arizona.

Site Year Clay (%) Silt (%) Sand (%) USDA Soil Texture

S8 2016−17 21.7 40.0 38.4 Loam
J118 2017 18.1 21.4 58.4 Sandy loam
S1 2018 24.3 57.0 18.7 Silt loam
S2 2018 23.7 43.3 33.1 Loam
S5 2017−18 22.9 43.4 33.7 Loam
S6 2018 23.8 36.5 39.7 Loam
H8 2018−19 29.2 20.2 50.6 Sandy clay loam

Table 6
Wheat eddy covariance site schedules and reference weather stations.

Site Region Area (ha) Location Elev. (m) Owner/ID Deploy Remove

S8 Yuma 129.13 32° 41′ 37″ N; 114° 30′ 51″ W 46 USDA 1 14 Dec 2016 5 May 2017
J118 Yuma 46.96 32° 36′ 45″ N; 114° 41′ 23″ W 34 USDA 2 12 Jan 2017 1 Jun 2017
S5 Yuma 129.67 32° 41′ 51″ N; 114° 31′ 10″ W 45 JPL 1 18 Dec 2017 1 Jun 2018
S1 Yuma 131.02 32° 41′ 50″ N; 114° 31′ 41″ W 45 USDA 1 5 Jan 2018 31 May 2018
S2 Yuma 119.74 32° 41′ 51″ N; 114° 31′ 26″ W 45 JPL 2 8 Jan 2018 31 May 2018
S6 Yuma 130.68 32° 41′ 50″ N; 114° 30′ 56″ 46 USDA 2 29 Jan 2018 1 Jun 2018
H8 Maricopa 247.40 33° 4′ 39″ N; 112° 6′ 43″ W 355 UA 1 18 Dec 2018 24 May 2019
AZMET: Yuma North Gila Yuma 32° 44′7″ N, 114° 31′ 49″ W 45 1 Jan 1987 –
AZMET: Maricopa Maricopa 33° 04′ 8″ N, 111° 58′ 20″ W 362 22 Jan 1988 –
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filling was done daily since variability at shorter time steps was high.
Energy balance closure was enforced using the Bowen ratio method (Eq.
(2), Twine et al., 2000):

LEcorr = (Rn-G)/(β+1) (2)

where LEcorr is the closure corrected latent heat flux, Rn is net radiation,
G is soil heat flux, and β is the Bowen ratio (sensible heat flux, H, di-
vided by observed latent heat flux, LE). Observed daily ET, ETc, (mm)
was then computed by summing 30-minute, LEcorr samples:

=
=

ET
LE

c n
corr n

v n w n
1

48 ,

, , (3)

where n is a 30-minute time sampling index, λv is latent heat of water
vaporization (J/kg) and ρw is water density (kg/m3).EC data quality
was further evaluated using energy balance closure estimation fol-
lowing similar procedures (metabolic storage was omitted) to those
described in Anderson and Wang (2014). Closure is the ratio of eddy
covariance available energy (AEEC = H + LE) to the so-called ‘radio-
metric’ available energy (AERAD = Rn - G):

=
=

Closure AE
AEn

EC

RAD1

48

(4)

2.3. Satellite observations

Data required for this study were calibrated, multispectral visible
near infrared reflectance data with high spatial resolution (20 m or
better) and high temporal frequencies (weekly or better). Multispectral
data were needed to create vegetation indices, critically NDVI ([NIR-
Red]/[NIR + Red]) from red (∼670 nm) and near infrared (∼800 nm)
reflectance. High spatial resolution was needed to resolve wheat fields
without significant field-edge effects. High temporal frequencies were
needed track the rapidly changing wheat canopy and to maintain good
time resolution despite cloudy sky events. Data from two satellite sen-
sors (Table 8) met these requirements: Sentinel 2 a/b, (www.esa.int/
Applications/Observing_the_Earth/Copernicus/Sentinel-2) for 2017
and 2018 Yuma data, and Venus (https://www.theia-land.fr/en/
product/venus/) for the 2019 Maricopa data. Incorporation of

additional observations from Landsat 7 and 8 would improve temporal
sampling. However, they were not included due to the need for addi-
tional analyses to accommodate coarser (30 m) spatial resolution and
similar, but not identical, spectral sampling. These differences compli-
cate the generation of a unified NDVI time-series.

Sentinel 2 (a/b) is a pair of identical satellites collectively observing
identical targets weekly. They are multispectral pushbroom instruments
in sun-synchronous orbits with overpass times in Arizona at ∼11AM.
Data for NDVI have 10 m resolution. Orthorectified, 100 km x 100 km
tiles, with top-of-atmosphere (TOA) reflectance (L1C), were down-
loaded from USGS (earthexplorer.usgs.gov). Because UTM zone 12 is
used for all Arizona sites as part of USDA Maricopa lab GIS protocol,
Yuma area images needed to be re-projected: Yuma lies slightly west of
the nominal zone 12 boundary of 114°W. For this task the GDAL
(gdal.org) package gdalwarp, as implemented in rgdal, was used.
Sentinel 2 NDVI values were generated from top of atmosphere (TOA)
bands 4 and 8.

Atmospherically corrected reflectance data are generally pre-
ferred—and were used for the Venus sensor data as noted below– be-
cause the resulting indices are more representative of actual vegetation
conditions than those derived from uncorrected data. This preference,
however, created a difficult-to-resolve data processing challenge. Tools
such as 6S, Sen2Agri, and MAJA- a package combining the Multi-sensor
Atmospheric Correction and Cloud Screening (MACCS) and ATCOR
(Hagolle et al., 2015)- could have been used, but necessary local at-
mospheric data and computer hardware were not available. For con-
sistency, this unavailability suggested that all analyses be conducted
using less-than-optimal TOA data. On the other hand, if the effects of
atmospheric corrections upon ET estimates could be quantified, then a
compromise could be made. TOA data could be included while not
losing results where surface reflectance data were available.

To show the viability of this latter approach, we evaluated the ef-
fects of atmospheric corrections on four key parameters: NDVI, NDVIn
(Eq. (1)), Kcb, and ETc using ‘Venus’ (theia.cnes.fr) data. The Venus
project enabled the evaluation since it provides both 5-m top-of-at-
mosphere reflectance (L1C) and MAJA-generated 10-m surface re-
flectance (L2A) data. Two regions from 2019 were considered: the
Maricopa wheat field H8 and Yuma wheat fields S1, S2, S5, S6, and S8.
Note that wheat grown at Yuma in 2019 was not part of the ground
study, which meant that ETc estimates from the atmospheric compar-
ison study were compared but not validated. The full wheat season, late
December 2018 to early June 2019 were assessed with 49 scenes over
Maricopa and 79 over Yuma. We show below that use of top-of-atmo-
sphere data—filtered to include only scenes with no visible clouds–
introduces small (<5%) bias errors.

For wheat grown in 2019 at Maricopa, Venus microsatellite data
were used (data not available over Yuma for the 2018 sites). Venus
(Table 8) has similar spectral responses to Sentinel 2 but is superior in
several ways: higher spatial resolution- 5−10 m nadir resolution vs.
20−60 m, 2-day, constant view-angle acquisitions vs. 5−10-day
overpass frequency, and availability of both top-of-atmosphere and
atmospherically corrected reflectances. Consequently, the potential
temporal sampling intervals were greatly improved over alternative
sensors. Orthorectified, 27 km x 27 km, multispectral L2A, 10 m surface

Table 7
Eddy covariance instrumentation.

Name Deployment Sites Covariance Sensors Net Radiometer Soil Heat Flux Plates

ALARC1 S8, S1 CSAT3, LI7500 REBS Q7 Hukseflux
Self-Calibrating

ALARC2 J118, S6 CAT3, LI7500 REBS Q7 Hukseflux
Self-Calibrating

JPL1 S5 EC150 Kipp & Zonen CNR4 Hukseflux
JPL2 S2 EC150 Kipp & Zonen CNR4 Hukseflux
UA1 H8 Irgason NRLite Hukseflux

Table 8
Remote sensing satellite acquisition attributes for the Sentinel 2 and Venus
sensors. Counts denote total number of scenes acquired and used in this study.

Sensor Attributes Sentinel 2 a/b Venus

Resolution (m) 10−20-60 5−10
Overpass time (MST) ∼11:25 ∼11:28
Overpass frequency (day) 5 2
Swath width (km) 290 27
Number of bands 13 12
NDVI bands B4: 665 nm; B8: 842 nm B7: 667 nm; B11: 865 nm
Image format JPEG2000, 1 file per

band
GeoTIFF, 1 file for all
bands

Scenes: Yuma 2017 25 –
Scenes: Yuma 2018 58 –
Scenes: Maricopa 2019 – 65
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reflectance, were used.
Having noted a preference for atmospherically corrected reflectance

images, it also needs to be noted their use introduces a different side-
effect: high sensitivity to noise in the red band. Since healthy vegetation
has very low reflectivity in the red band, noise in this spectral region
can leadto anomalously high NDVI values. One compensation approach
for this outcome is to apply a constant offset to the red reflectance
(Hagolle, et al., 2015, labo.obs-mip.fr/multitemp/using-ndvi-with-at-
mospherically-corrected-data/), to create a revised ‘NDVI’ denoted
ACORVI:

ACORVI = [NIR-(Red+0.05)]/[NIR+(Red+0.05)] (5)

The suggested offset, 0.05, is chosen to be small, yet greater than the
standard deviation of atmospheric correction uncertainty, typically
∼0.01. This study used Eq. 5 for all Venus-acquisitions but report them
as NDVI below.

2.4. Estimation of transpiration and evapotranspiration using vegetation
indices

We use the empirical Vegetation Index for the Southwestern US
(VISW; French et al., 2018) to transform remotely sensed reflectance
maps into daily evapotranspiration. VISW uses NDVI as a proxy for the
basal crop coefficient, Kcb. Thus, instead of using standardized

estimates of vegetation cover, one uses observations from satellite or
airborne images and an empirical transformation developed by Hun-
saker et al. 2005b; and 2007 (Fig.1, Table 1), i.e.:

Kcb = min [0.15; 0.176 + 1.325 NDVIn – 1.466 NDVIn2 + 1.146
NDVIn3] (6)

where NDVIn is normalized NDVI as calculated in Eq. (1).
For the present study, the NDVImin and NDVImax values used to es-

timate the Kcb for field sites are the lower and upper NDVI limits.
Rigorous criteria for optimal limit selection do not exist, hence objec-
tive thresholds based on observations were used: we selected prob-
ability levels of 10% and 90% from the empirical NDVI distributions. As
defined in FAO56, when potential effects of water stress on ETc are
considered, actual ETc (ETc act) is computed as:

ETc act = (Ks Kcb + Ke) ETo (7)

where Kcb represents crop transpiration (Tc), Ke is a coefficient for soil
evaporation, Ks is the water stress coefficient, and ETo is grass reference
evapotranspiration. For the Yuma sites, we limit evaluation of the
model (Equation 5 above) to only estimate Kcb with satellite NDVI, and
thus, calculate only the Tc portion of ETc, that is, Kcb times ETo. Ks was
not computed but assumed as 1.0 since we did not model the soil water
balance (SWB). Thus, water stress, if any, was not accounted for in the
Yuma Tc estimates. However, for the Maricopa field (H8), having more

Fig. 3. Eddy covariance daily data gap. Observed daily ETc from the seven sites are shown by their corresponding day of year. Daily observations with no gaps, 48
samples (from 30-minute time averages) are coded blue. Observations with gaps are coded with progressively darker gray values as the valid sample counts decrease.
S2, S6, and H8 sites had the fewest gaps, while J118 had the greatest. S5 was mostly gap-free except for the final 30 days of the 2018 experiment. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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frequent NDVI acquisitions, simulated daily SWB estimates, i.e., a se-
parate root zone and surface soil layer SWB, were made. These enabled
estimation of actual ETc by evaluating Ke and Ks using the FAO56 dual
crop coefficient procedures. Parameters for calculating Ke were based
on the soil evaporation characteristics given in FAO56 for the sandy
clay loam soil at H8. Fraction of soil wetted by irrigation and pre-
cipitation was set to 1.0. Crop height and crop rooting depth were in-
creased proportionately with estimated Kcb until maximum values of
0.90 and 1.5 m, respectively, were reached, maximum values referred
to in FAO56 for wheat. Similarly, crop cover was increased to a max-
imum of 0.99 at maximum Kcb but was allowed to decrease pro-
portionately with Kcb during late season senescence. The soil water
depletion fraction for no water stress (p) was set to 0.55 for ETc

act = 5.0 mm day−1, and adjusted daily for atmospheric demand, per
FAO56, Table 22, and footnote 2. In computation, Ks = TAW – Dr / (1-
p) TAW, where TAW is total available water in the root zone (mm) and
Dr is the root zone depletion (mm).

Statistical comparisons between daily observed ETc and either Tc (S
sites) or ETc act (H site) were evaluated separately over different growth
stages, as well as for the entire wheat season. Growth stages were es-
timated based on evaluation of seasonal observed Kc tends, as described
in the next section. For each site, statistics were analyzed over the in-
itial and development, mid-season, and late season stages. Analyses
included linear correlation and root mean square error (RMSE), mean
difference (MD), mean absolute difference (MAD), and percent MAD
(MADP) relative to the observed mean.

2.5. Measured and estimated crop coefficients

Daily values of the single crop coefficient, Kc, were calculated for
sites by dividing the observed daily ETc from eddy covariance by daily
ETo. Segmented, linear FAO56 Kc curves were derived by visually fitting
the Kc data to the initial, mid-season, and late season growth stages. The
model estimated Kcb for the Yuma sites and the Kcb and Kc (H8 site only)
were compared to the observed Kc.

2.6. Evapotranspiration terminology

To summarize, this study compared evapotranspiration estimates
from eddy covariance stations – denoted ‘observed ETc ‘– against ve-
getation index-based estimates derived from satellites in two different
ways. For all Yuma sites, model estimates represent just the transpira-
tion component of ETc and are denoted as ‘Tc ‘. For the Maricopa site
(H8), modeling incorporated a soil water balance and results there are
indicated as ‘ETc act‘.

3. Results

3.1. Daily eddy covariance ETc and ETo

Eddy covariance data from all seven sites were quality checked-

unrealistic values were removed, time data gaps filled, energy balance
enforced- then outputs were compared with ETo.

Daily observed ETc plots (Fig. 3) display the timing of data gaps in
terms of sample counts, where non-gap days (over 48, 30-minute
samples) are shown in blue. Continuously gapped days (0 samples) are
in black. Three of the sites (S2, S6, and H8) had few gaps and could
mostly be filled by linear interpolation. The other four sites (S8, J118,
S1, and S5) had longer duration gaps and required multiple correction
procedures. Gaps at S8 and S5 were almost exclusively due to loss of
IRGA, but not sonic values; for these, missing LE data were estimated by
energy balance residuals. Gap-filling at S1 was done by a fortuitous
arrangement with S2, an adjacent site with the same planting date and
similar irrigation history. In this case, linear regressions between the S1
and S2 flux components during non-gapped times were used to create
predictions to fill S1 gaps. The J118 site was the most problematic case.
Three different procedures were needed to fill gaps: linear interpolation
was done for gaps less than 2 h, LE fluxes were computed by residuals
for early and mid-season times, while for late times gap filling was done
only at daily time intervals and used estimated crop coefficients. This
last step was done by using AZMET Yuma North Gila ETo values,
computing Kc at the bounds of the data gap, and then linearly inter-
polating the product, Kc x ETo.

Closure was computed for all stations at daily time steps, a proce-
dure that reduces energy storage effects, then fit with linear models.
Reported in Table 9 are the summary statistics for each site on the left
half, and cumulative monthly (Feb-May) observed ETc (mm) before and
after correction via Eq. (2). Average monthly observed ETc error, con-
sidering all months (Dec-Jun), was 37 mm, which means that closure-
corrected cumulative observed ETc values were ∼30% greater than un-
corrected observations.

Eddy covariance data over wheat for all three years showed con-
sistent patterns of early season observed ETc at 1 mm/day ramping up
to over 8 mm/day mid-season, then rapidly dropping to < 1 mm/day
on senescence. Comparisons between observed ETc, which includes
both vegetation transpiration and soil evaporation and weather station
derived ETo, are shown for all 7 sites in Fig. 4 for 2017, Fig. 5 for 2018,
and Fig. 6 for 2019, where solid symbols indicate observed ETc from
eddy covariance observations and open symbols represent ETo calcu-
lated from Yuma North Gila and Maricopa AZMET stations. Observed
ETc usually falls below ETo until DOY 60, then closely tracks it for the
remainder of the season until senescence. Spikes in observed ETc of 2.0
or more mm/day above the trend generally coincide with preceding
irrigation or precipitation events (also shown in Figs. 4–6). Most no-
table for high observed ETc to ETo ratios during early season were the
S8 site in Yuma (2016−17; Fig. 4a) and the H8 site in Maricopa
(2018−19; Fig. 6). Both sites in their respective wheat years experi-
enced an irrigation immediately after planting and significantly more
precipitation events early in the wheat season as compared to other
sites and years. Cumulative observed ETc ranged from 499 mm to
684 mm (Table 10).

Table 9
Evapotranspiration closure assessment at monthly intervals for the 2017-2019 wheat studies. Linear model statistics- R2, RMSE (W m−2), number of days (N), were
derived from non-gap-filled observations of AEEC vs. AERN. ET values are shown by month before and after energy balance closure corrections for February-May.
With exceptions for sites S2 and S6, total corrected ETc values are less than reported in Table 10 because gap interval estimates are not included.

Site R2 RMSE W m2 N ETc (mm month−1)

Feb Mar Apr May
S8 0.61 30 119 64.8/107.9 95.5/166.2 33.7/129.0 2.2/6.2
J118 0.63 28 51 35.3/57.5 102.6/179.7 -/82.5 -/73.5
S1 0.94 12 113 -/16.1 91.9/109.1 -/198.5 -/164.4
S2 0.92 12 140 55.0/80.3 104.3/135.6 160.6/192.8 138.3/156.9
S5 0.83 17 123 67.3/130.3 104.4/174.6 116.5/177.3 -/-
S6 0.95 8 120 39.8/63.6 109.7/138.6 166.5/197.4 154.1/172.4
H8 0.71 24 141 50.5/72.0 77.2/108.5 149.9/201.3 98.1/118.0
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3.2. Satellite-based NDVI time series

NDVI over wheat showed patterns similar to observed ETc, with a
nearly flat trend before emergence, a rapid increase close to maximum
values at DOY 50–60, a 30-day plateau region, then an abrupt 10−20-
day NDVI decline on senescence. However, there were significant dif-
ferences between fields when examining details. In 2017, S8′s earlier
and more vigorous plant growth showed NDVI values rising above 0.8
and remaining above the later-planted J118 site until April (Fig. 7;
dashed lines indicate threshold NDVI values for each site). The different
planting dates of fields at S1-6 are readily apparent for the 2018 sites
(Fig. 8). For these fields, irrigation cut-off led to nearly simultaneous
senescence and nearly simultaneous NDVI drops. The range for non-
atmospherically corrected values are compressed values, ranging
0.1−0.82. For the 2019 H8 site (Fig. 9), all 8 borders closely tracked
each other, with NDVI ranging from 0.0 to 0.9, a result of using at-
mospherically corrected observations. Highlighted by the dashed lines
is an interval of crop water stress that is represented by an NDVI drop of
about 5%. The persistence of clear skies in combination with soil water
balance modeling (discussed below) supports this interpretation.

3.3. Daily observed ETc vs. estimated Tc and ETc act

Applying the NDVI to Kcb transformations resulted in time-series
modeled Tc (Yuma sites) and ETc (Maricopa site) values that closely

track observed ETc for 2017 (Fig. 10a and 10b), for 2018 (Fig. 11a to
11d for Yuma sites) and 2019 (Fig. 12 for H8 in Maricopa). Trends
previously observed are mimicked by NDVI-implemented modeling
where many of the irrigation events are represented by spikes in both
ETc and satellite-based NDVI. The H8 site for 2019 shows the average
modeled ETc act of the 8 borders along with observed ETc at H8
(Fig. 12).

Results from estimated Tc and ETc for the 2018 and 2019 seasons
showed seasonal patterns, where VI-derived estimates closely agreed
with observed ETc at mid-season, but consistently underestimated ETc

at early and late growth seasons. Estimated Tc (non-adjusted for water
stress) for early season conditions at Yuma sites in 2017 (Fig. 10) and
2018 (Fig. 11) are consistent with expectations: for sparse cover, Tc is
low, while ETc is relatively high due to soil evaporation. Observed ETc

for all four S sites in 2018 increased above estimated Tc following ir-
rigations applied on day of year (DOY) 40 for S1 and S2 (Fig. 11a and
b), DOY 30 for S5 (Fig. 11c), and DOY 53 for S6 (Fig. 11d). Starting in
early March 2018, consistency among all four sites is restored. About
DOY 65, at near full cover, and when Tc and ETc should be nearly the
same, estimated Tc agrees well with measured ETc. During the later
season (DOY after 110), Tc underestimates measured ETc, suggesting
higher soil evaporation at late-season irrigation when crop cover is
reduced. For 2017, seasonal total estimated Tc is within 20 mm of total
observed ETc at S8 but was 73 mm less for J118 (Table 10). Seasonal
total estimated Tc for Yuma site S2 is close (within 16 mm) to total

Fig. 4. Daily observed wheat evapotranspiration (ETc) and measured irrigation depths at S8 (a) and J118 (b) and daily reference evapotranspiration (ETo) and
precipitation recorded at the Yuma North Gila AZMET weather station in 2016-17.
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observed ETc. However, for sites S1, S5, and S6, total Tc is 52–110 mm
less than total observed ETc, suggesting more soil evaporation may have
occurred at those sites, particularly during the early season. At the
Maricopa field (Fig. 12), where ETc act was estimated, agreement was
very good except for underestimated ETc for DOY between 20 and 35.

Total estimated ETc act was only 17 mm less than observed total at H8.
As alluded to earlier concerning water stress at H8, according to the
SWB model the estimated ETc act was reduced by water stress (Ks < 1.0)
for ten days at the end of a 21-day lapse without irrigation or significant
rain (i.e., from DOY 98–107). This period is mid-season when wheat ETc

Fig. 5. Daily observed wheat evapotranspiration (ETc) and measured irrigation depths at S1 (a), S2 (b), S5 (c), and S6 (d) and daily reference evapotranspiration
(ETo) and precipitation recorded at the Yuma North Gila AZMET weather station in 2017-18.

Fig. 6. Daily observed wheat evapotranspiration (ETc) and measured irrigation depths measured at H8 and daily reference evapotranspiration (ETo) and precipitation
recorded at the Maricopa Agricultural AZMET weather station in 2018-19.
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is high. The estimated water stress during this period reduced the es-
timated ETc by about 17 mm from a non-stress condition. While ob-
served ETc also declined during this 10-day period, reduction was
greater for ETc act (Fig. 12).

The statistical correlations and mean differences between daily es-
timated Tc or ETc and the observed ETc for different growth stages and
for all stages combined are shown for the 2017 Yuma sites (Table 11)
and for the 2018 sites in Yuma and the 2019 site in Maricopa
(Table 12). The 2017 results indicate that estimated daily Tc was less
than observed ETc during initial-development stages with a MADP of
37–39%. As expected, based on the daily estimated and observed values
shown in Fig. 10, agreement at S8 and J118 was much better during the
mid-season stage (MADP within 14%), although mean Tc was higher
than observed mean ETc for S8. The trend remained for S8 during the
late-season, suggesting observed ETc may have experienced water-stress
that was unaccounted for by the Tc estimates based on rather large gaps
in NDVI data. For 2018, observed data were well-correlated (high r
value and RMSE < 0.45 mm/d) for S1, S2, and S5 during the initial-
development period, and less-correlated for S6 and H8. The higher
correlations indicate that the daily trends for estimated Tc were similar
to those for observed ETc during the early growth stages, though mean
daily Tc was much lower than mean observed ETc, as indicated by the
MADP (36–40%) for S1, S2, and S5. Although the estimated Tc (for S6)
and ETc act (for H8) were not as well correlated with daily observed
during the early growth stages, the MADP was about the same for S6
and even lower for H8 (28%) compared with the three other S sites.
Smaller r values and higher RMSE during mid-season than early season
for the four S sites indicate that daily values of estimated Tc were
generally less aligned with daily observed fluctuations. Daily ETc act and
observed ETc were better correlated during mid-season than during
earlier stages. For all sites, the absolute differences between estimated
and observed were smallest during the mid-season, varying in MADP
from 13% to 18% (Tables 11 and 12). Late-season r values were rela-
tively high at all sites, indicating an agreement in trend between esti-
mated and observed the daily values. Absolute agreement based on
MADP (19–22%) was best for S5 and for the H8 site when ETc act was
estimated. Considering the daily data for the entire season, estimated
data were well-correlated and similar for all sites and years, where r
values were 0.85–91 and RMSE were near 1.0 mm/d. Mean absolute

Table 10
Number of irrigations applied (N), total irrigation applied, total observed crop
evapotranspiration (ETc) from eddy covariance, total estimated crop tran-
spiration (Tc) for Yuma sites: S1, S2, S5, S6, S8, and J118, total estimated ETc

for H8 (Maricopa), and grain yields for the seven durum wheat field sites in
Arizona.

Site Year Irrigations* Total
irrigation
applied
(mm)

Total
measured
ETc (mm)

Total
estimated Tc

or ETc
†

(mm)

Grain yield
(kg/ha)

S8 2016-17 5 690 499 479 6950
J118 2017 6 2114 540 467 5020
S1 2018 6 675 684 574 8070
S2 2018 6 635 588 572 8290
S5 2017-18 6 618 652 594 10180
S6 2018 6 627 578 526 7080
H8 2018-19 6 1710 635 618 6810

* Number of post planting irrigations.
† Tc estimated for all sites except H8.

Fig. 7. NDVI time series for 2017 wheat sites S8 and J118 in Yuma. Sentinel 2
top-of-atmosphere observations indicated as solid circles. Dotted lines indicate
interpolated NDVI. Dashed lines represent NDVI lower and upper limits as
computed by 10% and 90% probability levels.

Fig. 8. NDVI time series for 2018 wheat sites S1, S2, S5, and S6 in Yuma.
Sentinel 2 top-of-atmosphere observations indicated as solid circles. Dotted
lines indicate interpolated NDVI. Dashed lines represent NDVI lower and upper
limits for S5, computed by 10% and 90% probability levels. Limits for the other
sites are not shown to maintain figure clarity but were similar to S5 values.

Fig. 9. NDVI time series for 2019 wheat site H8 in Maricopa, borders 5-12,
derived from Eq. (3). Atmospherically corrected Venus observations indicated
as solid circles. Dotted lines indicate interpolated NDVI. Red vertical lines de-
note the water stress interval as detected by Venus NDVI. Blue lines denote the
onset and end of water stress as based on soil moisture depletion model. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)
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differences for the entire season were from 0.78 to 1.07 mm/d, in-
dicating estimated values were about 20–23% less than observed for the
season.

The total irrigation applied to wheat borders at the six Yuma sites
(Table 10) were generally not much higher than the total observed ETc,
albeit with one exception at J118., Otherwise, total irrigation varied
from 34 mm less to 191 mm more than total ETc, indicating high irri-
gation efficiencies. In contrast to these, irrigation at the Maricopa H8
site was less efficient, with total irrigation exceeding total ETc by over
1000 mm. The grower at H8 realized something had changed in his
organic wheat borders that made the water advance times much slower
than in the previous year. The lowest grain yield for all sites was at
J118 in 2017 (Table 10), which was a smaller field with a much sandier
soil profile below 0.15 m than the other sites. Because of the high in-
filtration rate in J118, the field had to be irrigated at high flow rates,
which ultimately led to exceedingly high irrigation depths relative to
ETc. The relatively low yield for H8 (organic wheat) could reflect deep
leaching of nutrients due to excessive irrigation.

3.4. Daily observed Kc and modeled kcb and Kc

High observed Kc during early-season for S8 in 2016–2017
(Fig. 13a) reflects soil evaporation due to the post-plant irrigation and
the frequent occurrence of precipitation during Dec.-Jan. In contrast,
J118 planted in mid-Jan. 2017 without a post-plant irrigation had
lower observed Kc during the early stages of growth (Fig. 13b). At mid-
season, average Kc at S8 was 1.06 but observed Kc likely declined
during mid-season between DOY 77–84 due to water-stress. In contrast,
average Kc during mid-season for J118 was only 0.92 and daily values
were similar to modeled Kcb until DOY 100 when Kcb rapidly declined
relative to observed Kc. End-of-season observed Kc was similar for S8
and J118, about 0.30. The measured Kc for the S1, S2, S5, and S6 Yuma
sites in 2018 showed similar trends with time (Fig. 14). However, the
measured Kc data during the early season for these sites were variable
with generally lower observed Kc at the S1 site (Fig. 14a) and S2 site
(Fig. 14b) than at S5 (Fig. 14c) and S6 (Fig. 14d). For all the S sites in
2018, except S6, which was planted later, Kc spikes high following a
rain on DOY 9 and 10, albeit the two-day Kc spike in S5 appeared un-
realistically high. For S6, the observed Kc spiked from DOY 55–60 fol-
lowing irrigation application. Although these spikes corresponded to a

Fig. 10. Daily observed wheat evapotranspiration (ETc) and daily estimated wheat crop transpiration (Tc) modeled as daily basal crop coefficient (Kcb), derived by
normalized satellite NDVI, times the daily reference evapotranspiration (ETo) at Yuma sites S8 (a) and J118(b).
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time of low crop cover (indicated by the low NDVI at the time for S6 in
Fig. 8), they were higher than expected. Thus, fitting an FAO56 initial
horizontal Kc was difficult due to the variable early season Kc data.
Measured Kc reached maximum values at mid-season from about DOY
40–70 depending on planting date for S sites and then Kc plateaued,
fluctuating about the fitted horizontal mid-season FAO56 curve

(Fig. 14). Obvious declines in Kc data occurred after mid-season,
starting around DOY 130–140 for S1, S2, and S6 and around DOY 120
for S5, which was planted earlier than the other S sites. The Kc data at
the estimated mid-season growth averaged 1.14 for S1, 1.05 for S2 and
S6, and 1.10 for S5. Those values are the same as the estimated FAO56
mid-season segment shown in each figure. End of season Kc varied from
about 0.20 to 0.30 for the S sites, indicating the dry soil condition prior
to harvest. Estimated Kcb values derived from satellite NDVI show some
overestimation from DOY 40–90 and underestimation after DOY 110,
relative to the Kc for S1 (Fig. 14a). The estimated Kcb for S2 (Fig. 14b)
appears to be closely representative of actual Kc data during develop-
ment where Kcb is about 0.10 lower than Kc, though Kcb then becomes
higher than Kc for a period during mid-season. The estimated Kcb values
are much lower than Kc during initial through development stages for
S5 and S6, likely indicating that soil evaporation was higher at those
sites than S1 and S2. During mid-season and late, estimated Kcb is
consistent with measured Kc for S5. For S6, mid-season Kcb fits the
measured data well with some underestimation during late season.
Comparison of the seasonal totals of measured ETc show good agree-
ment with the estimated total Tc (Table 10) for the S sites in 2018,
showing total Tc was less than ETc by 16–110 mm, depending on site.

For the Maricopa site (Fig. 15), an initial FAO56 Kc line was not
given due to very high early season measured Kc caused by significant
rain during January 2019. The Kc during development period (DOY
10–50) for H8 was also skewed when frequent rain occurred. The es-
timated FAO56 mid-season Kc for H8 in 2019 was 1.1, higher than those
in Yuma in 2018. The end of season Kc was about 0.40. The SWB and
VI-based modeled daily Kc was not consistent with observed Kc during
the rainy development period. However, it was close to the observed
data during mid-season. The modeled Kc captured the decline in Kc due

Fig. 11. Daily observed wheat evapotranspiration (ETc) and daily estimated wheat crop transpiration (Tc) modeled as daily basal crop coefficient (Kcb), derived by
normalized satellite NDVI, times the daily reference evapotranspiration (ETo) at Yuma sites S1 (a), S2(b), S5 (c), and S6 (d) in 2017-18.

Fig. 12. Daily observed wheat evapotranspiration (ETc) at H8 in Maricopa and
daily estimated actual crop evapotranspiration (ETc act) modeled using daily
basal crop coefficients (Kcb) derived by normalized satellite NDVI, incorporated
within the FAO56 dual crop coefficient procedures, and a simulated daily soil
water balance of the crop root zone. Estimated ETc act represents the average of
the eight borders at H8 in 2018-19.
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to water stress between DOY 98 and 107 and the increased jump in
observed Kc following the irrigation on DOY 108. As mentioned earlier,
total observed ETc was 17 mm more than total modeled ETc (Table 10)
indicating good seasonal agreement. Estimated seasonal evaporation
for H8 was about 65 mm, similar to the difference in total ETc and Tc at
the S5 and S6 sites.

3.5. Assessment of satellite-based NDVI

Lastly, a parallel study assessed the importance of atmospheric
correction to satellite reflectance data and specifically to resulting ET
estimates. As expected, NDVI values were found strongly affected, but
subsequent effects were greatly reduced after NDVI normalization.
Results from analysis over the H8 site at Maricopa are shown in
Fig. 16a, and for the S wheat sites at Yuma in Fig. 16b. Red symbols
represent parameters derived from non-corrected L1C Venus data,
while blue symbols are corresponding parameters for corrected L2A
data. The adjusted NDVI—denoted ACORVI on top panels—are sensi-
tive to atmospheric corrections, where the range of indices are reduced
by 25–40%. When the ACORVI values are normalized using Eq. (1) and

VI limits at 10% and 90% quantiles, NDVIn estimates from L1C mostly
agree within 5% of L2A data for both sites. Normalization at Yuma led
to thresholding at full canopy, a contributing factor to the small dif-
ferences observed at mid-season. Transformations to Kcb are shown in
the third panels of Fig. 16a and 16b. At the Maricopa H 8 site, nor-
malization thresholds for L1C data over-estimate surface reflectance in
the early and mid-seasons, while the over-estimations occur in the late
season for Yuma sites, a difference possibly due to differing soil re-
flectivity. Daily ETc values, bottom-most panels, are obtained by line-
arly interpolating satellite derived Kcb values to daily time steps, then
multiplying these by ETo obtained from AZMET data. Daily ETc esti-
mates differ by less than 1 mm/day and cumulative full season ET
(indicated on left side of each panel) by ∼30 mm. This two-site test
indicated that use of top-of-atmosphere satellite data, after normal-
ization, is likely to result in ETc estimation errors on the order of 5% or
less.

4. Discussion

Results from the Arizona wheat studies demonstrated the

Table 11
Summary statistics for observed crop evapotranspiration (ETc) and estimated crop transpiration (Tc) for the S8 and J118 Yuma sites in 2017. Statistics used to
evaluate differences between estimated and observed include mean, correlation coefficient (r), root mean square error (RMSE), mean difference (MD), mean absolute
difference (MAD), and percent MAD (MADP) of mean observed.

Site Wheat growth stagea Mean crop Tc Statistic

Observed
(mm/d)

Estimated
(mm/d)

r
(-)

RMSE
(mm/d)

MD
(mm/d)

MAD
(mm/d)

MADP
(%)

S8 Initial-develop. 2.28 1.65 0.72 0.88 0.63 0.90 39.4
J118 2.19 1.60 0.80 0.72 0.59 0.82 37.4
S8 Mid-season 4.20 4.51 0.70 0.76 −0.31 0.59 14.0
J118 5.74 5.50 0.68 0.67 0.24 0.75 13.0
S8 Late-season 4.57 4.74 0.72 0.89 −0.17 0.80 17.4
J118 3.92 3.11 0.92 0.55 0.81 0.93 23.7
S8 All stages 3.47 3.33 0.85 1.02 0.14 0.78 22.6
J118 3.91 3.38 0.91 0.86 0.53 0.82 21.1

a Growth stages are approximate based on visually-fitted observed crop coefficient (Kc) curve over the season. All stages include data for the entire season.

Table 12
Summary statistics for observed crop evapotranspiration (ETc) and estimated crop transpiration (Tc) for the S1, S2, S5, and S6 Yuma sites in 2018 and estimated
actual ETc for the H8 Maricopa site in 2019. Statistics used to evaluate differences between estimated and observed include mean, correlation coefficient (r), root
mean square error (RMSE), mean difference (MD), mean absolute difference (MAD), and percent MAD (MADP) of mean observed.

Site Wheat growth stagea Mean crop ETc or Tc Statistic

Observed
(mm/d)

Estimated
(mm/d)

r
(-)

RMSE
(mm/d)

MD
(mm/d)

MAD
(mm/d)

MADP
(%)

S1 2.17 1.33 0.90 0.41 0.83 0.85 39.2
S2 1.85 1.23 0.85 0.43 0.62 0.67 36.0
S5 Initial-develop. 2.08 1.28 0.90 0.45 0.80 0.85 40.8
S6 2.69 1.72 0.74 0.80 0.98 1.05 38.8
H8 2.18 1.85 0.54 0.55 0.33 0.60 27.7
S1 6.15 5.65 0.81 0.82 0.50 0.96 15.6
S2 5.35 5.67 0.73 1.06 −0.34 0.94 17.6
S5 Mid-season 5.05 5.02 0.68 1.15 0.02 0.60 17.9
S6 6.31 6.23 0.71 0.78 0.08 0.60 12.7
H8 4.86 5.09 0.83 0.96 −0.23 0.87 18.0
S1 5.26 3.89 0.92 0.55 1.37 1.92 36.4
S2 4.84 4.47 0.87 0.73 0.38 1.16 23.9
S5 Late-season 4.53 4.21 0.91 0.63 0.31 0.84 18.6
S6 3.72 3.60 0.95 0.29 0.12 1.18 31.8
H8 5.66 5.33 0.81 1.47 0.33 1.25 22.0
S1 4.65 3.90 0.89 1.03 0.75 1.07 23.1
S2 4.08 3.98 0.88 1.16 0.11 0.89 21.7
S5 All stages 3.93 3.58 0.88 1.02 0.35 0.87 22.1
S6 4.66 4.24 0.88 1.11 0.42 0.94 20.1
H8 4.09 3.97 0.88 1.09 0.12 0.87 21.4

a Growth stages are approximate based on visually-fitted observed crop coefficient (Kc) curve over the season. All stages include data for the entire season.
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practicality and accuracy of the spaceborne NDVI-based Kcb model to
estimate daily and seasonal crop water use of wheat. Usable satellite
scenes ranged between 25 and 65 per growing season, which corre-
sponds to a realized periodicity of 3–7 days. This high cadence, possible
because of Sentinel 2 and Venus capabilities and a favorable clear sky
environment, enabled excellent tracking of wheat canopy growth.
Considering 7 sites visited over 2016–2019 using eddy covariance ob-
servations, the study estimated total ETc in the range of 499–684 mm,
values less than total irrigation on the order of 50−100 mm for S1-S6

sites and 201 mm for S8, suggesting reasonable irrigation efficiencies at
those sites. Notable exceptions in irrigation efficiency occurred at H8,
where applied irrigations exceeded observed ETc by over 1000 mm and
J118, where irrigations exceeded ETc by nearly 1500 mm. These dif-
ferences highlight that EC monitoring generally cannot capture highly
inefficient scheduling absent slow infiltration conditions. Comparing
total observed ETc for seven sites in Arizona to remotely sensed esti-
mates showed agreement within 16–110 mm over the growing season,
and estimates were consistent with the seasonal ETc value of 655 mm

Fig. 13. Daily observed wheat single crop coefficient (Kc), FAO56 Kc curve visually fitted to observed data, and daily estimated basal crop coefficient (Kcb) derived
from normalized satellite NDVI, assuming no water stress, for Yuma fields S8 (a), and J118 (b) in 2016-17.
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provided by Erie et al. (1982) for the Southwestern US. This indicates
that satellite based VI offers a good way to estimate seasonal ETc once
relationships with EC data have been tested.

When assessing within season water use there were differences in
performance of the VI-based estimates in early vs. mid-late periods.
Mid-season observed Kc values ranged from 1.05 to 1.14 for sites that
were considered not highly water-stressed and values are consistent
with literature findings for wheat reported by Pereira et al. (2020, this

Special Issue), which ranged from 1.0–1.3 based on the FAO56 grass
reference ETo. Observed end-of-season Kc varied from about 0.2 to 0.4
considering the Yuma and Maricopa sites. Range in values reported for
end-of-season wheat Kc in the literature review by Pereira et al. (2020)
are from 0.1 to 0.4 for low moisture grain. Agreement between Tc and
ETc estimates obtained via Sentinel 2 and Venus observations, respec-
tively, agreed well with EC observations after the first 50–60 days of
growth. On the other hand, early season Tc and ETc estimates in
2016–2019 (<60 days), were erratic and not as reliable, an outcome to
be expected in part because sparse vegetation cover contributes a noisy
and weak signal to the NDVI time series. Note that had an alternate
linear formulation for Kcb been used (Drerup et al., 2017; Er-Raki et al.,
2007), early season Tc and ETc estimates would also be less than ob-
served. Additional reasons for worse early season performance were the
occurrences of soil surface evaporation from rainfall events and some
EC sensor failures. Soil evaporation could be better accommodated with
thermal remote sensing with sensors such as Landsat and ECOSTRESS.
Errors induced by equipment failure emphasize the difficulty of data
gap filling. Lacking sufficient thermal data, utilization of FAO56
methods (Allen et al., 1998) to estimate Kc remains preferred for the
early season irrigation scheduling. This may also include the need to
construct an appropriate localized segmented FAO56 Kc curve to esti-
mate ETc until satellite NDVI are deemed reliable (e.g., 60 days after
planting, when irrigation scheduling starts in earnest in Arizona).

A notable finding from the study was a demonstration of the ability
to use NDVI to detect water stress. Commonly one assumes that the
NDVI signal is too imprecise to be used for abnormal plant water
conditions, and for such cases thermal infrared sensing should be used.
In a ground-based study over wheat, Jackson et al. (1982) reported no
immediate resolution of water stress with any of the tested indices. Data
from this study indicate that is not necessarily true. Results from the
2017 Yuma sites (S8 and J118) and the 2019 Maricopa H8 sites showed
that for irrigated seasonal crops, such as wheat, a combination of

Fig. 14. Daily observed wheat single crop coefficient (Kc), FAO56 Kc curve visually fitted to observed data, and daily estimated basal crop coefficient (Kcb) derived
from normalized satellite NDVI, assuming no water stress, for Yuma fields S1 (a), S2(b), S5 (c), and S6 (d) in 2017-18.

Fig. 15. Daily observed wheat single crop coefficient (Kc) at H8 in Maricopa,
FAO56 Kc curve visually fitted to observed data, daily modeled Kc, based on
estimated basal crop coefficients (Kcb), derived from normalized satellite NDVI
and adjusted by the water stress coefficient (Ks), plus the estimated soil eva-
poration coefficient (Ke), calculated using FAO56 dual crop coefficient proce-
dures and simulated daily soil water balance (SWB) of the crop root zone and
soil evaporation layer. Modeled Kc and Kcb lines for H8 represent averages
calculated separately for the eight borders in 2018-2019.
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frequent, well-calibrated, high spatial resolution visible near infrared
remote sensing can resolve water stress. For the Maricopa event a clear
and persistent 5% drop in NDVI occurred within 2 days of soil water
balance model predicted stress. One can foresee an operational system
with short latency that could detect and forecast water stress events
based on a collection of frequent NDVI data supported by a background
soil water balance model. Although the study did not investigate SWB
status at the 2017 Yuma S8 and J118 sites, stress may be indicated there
too by NDVI. In these instances, the indicators could be anomalous
depressions at short- and long-duration time scales. Thus, for non-
standard conditions, quantile selection for NDVI normalization won’t be
sufficient for crop coefficient estimation. Instead, historical or spatially
contextual selection of NDVI limits would be needed. Required condi-
tions to make detection feasible and reliable include accurate atmo-
spheric corrections to the time series, accurate satellite calibration, si-
milar satellite view angles for all overpasses, high spatial (10 m or
better) resolution, and frequent overpasses (<7 days). This latter as-
pect, which Venus eminently provided with 2-day sampling, demon-
strates the value of high cadence imaging. With frequent images, trend
persistence adds confidence that the observations are real and not ac-
quisitional or processing artifacts. Less frequent images, separated by a
week or more, would make it more likely that stress signals would re-
main unrecognized because of small sample sizes and the increased
probability of confounding rainfall or irrigation events. The availability
of frequent images also suggests a change in analysis: time series should
not be smoothed with filters such as Savitzky-Golay (Savitzky and

Golay, 1964) because that step would reduce or remove the stress sig-
nals.

5. Conclusions

A three-year study was undertaken to evaluate and validate Tc and
ETc over irrigated durum wheat using a previously developed basal
crop coefficient model based on vegetation indices that were derived in
this study from spaceborne platforms. Comparisons based on eddy
covariance ETc observations indicated the remotely sensed modeled
values agreed very well for the total season and for most of the growing
season, with best agreement during mid-season. Measured single crop
coefficients at mid-season and end of season for durum wheat were
consistent to those presented in the original FAO56 table and to those
updated in the present Special Issue. Agreement was not as good for
early season wheat growth, an outcome consistent with the limited
ability of VIs to detect soil evaporation and to accurately represent
transpiration over sparse cover. The latter results suggest that addi-
tional methods, such as FAO56 procedures to handle initial Kc values,
or additional measurements will be needed to supplement VI-based ETc

capabilities prior to effective wheat cover. However, mid-season ETc

can be accurately modeled with VI-based approaches, even during
water stress events. The results strengthen existing reports on FAO56
mid-season crop coefficients to use for wheat. Additional studies in
environments different from the U.S. Southwest are needed to show
that the VI methodology is broadly applicable for wheat grown

Fig. 16. VI sensitivities to atmospheric correction. Effects on ACORVI, NDVIn, Kcb, and ETc were evaluated over the Maricopa H8 site in (A) and 5 Yuma S sites (B) in
2019. Two Venus satellite data products were used for the comparisons: 5-m TOA L1C (red) and 10-m surface reflectance L2A (blue). While significant differences
existed between the two products for ACORVI, differences after VI-normalization were generally reduced. Cumulative ETc estimate differences were ∼30 mm. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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elsewhere. In addition, the satellite-based approach described in this
study is under evaluation for lettuce, spinach, melon, and cotton. The
aim is to demonstrate its potential for ET estimation accuracy and
practicality to become a routine decision support tool for crop water
management.
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