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Abstract
Winter vegetables, including lettuce, are a significant consumptive use of water in the Lower Colorado River Basin. Precise 

irrigation management is needed to increase water use efficiency and reduce the negative impacts of suboptimal irrigation, 

including nutrient leaching, crop stress, and crop pathogens. However, lettuce has multiple features that make accurate 

evapotranspiration (ET) modeling difficult, including asynchronicity with meteorological evaporative demand, short grow-

ing seasons, and a shallow root zone that increases the risk of using an incorrect ET value. To improve ET modeling and 

understand applied irrigation effectiveness for lettuce in this region, we used an energy and water balance bio-physical model, 

Backward-Averaged Iterative Two-Source Surface temperature and energy balance Solution (BAITSSS) on arid farmlands 

in the lower Colorado River basin. The study was conducted between 2016 and 2020 at twelve eddy covariance (EC) sites 

in lettuce with a wide range of soil physical properties. BAITSSS was implemented using ground-based weather and irriga-

tion data, and remote sensing-based vegetation indices (Sentinel-2). The model accuracy varied among sites, with a mean 

cumulative seasonal ET of ~ 3% and mean RMSE of 1.1 mm  d−1 when compared to EC. The results showed that accurate 

timing and amount of applied water (irrigation and precipitation) were critical to capturing ET spikes right after irrigation 

and tracking the continuous decrease of ET. This study highlighted the dominant factors that influence the ET of lettuce and 

how BAITSSS can improve ET modeling for irrigation management.

Introduction

The Colorado River supplies vital irrigation water for Yuma 

County, Arizona, which is one of the world’s leading pro-

ducers of lettuce and other winter vegetables (French et al. 

2020). This low desert region is fully dependent on irriga-

tion for crop production (Sanchez et al. 2009). However, 

the prolonged drought in California and the Western United 

States had a significant adverse effect on irrigated agricul-

ture (Lund et al. 2018; Chikamoto et al. 2020), where these 

effects were also propagated to the Colorado River Basin 

(Sanchez et al. 2009; Chikamoto et al. 2020; Norton et al. 

2021). Therefore, efficient irrigation is critical for manag-

ing the scarce water resources in this region (Sanchez et al. 

2009).

One way to achieve efficient irrigation practice is to 

estimate evapotranspiration (ET) using thermal remote 

sensing-based energy balance models (Melton et al. 2012, 

2021; Kilic et al. 2016; Fisher et al. 2017; Anderson et al. 

2021). These models make it possible to assess instantane-

ous crop water use and diagnose crop water stress. However, 

integration of irrigation, critical to efficient water manage-

ment of the agriculture sector (Melton et al. 2012), is largely 

unaccounted for due to the lack of these data (Alexandridis 

et al. 2014) and the lack of water balance components in 

the energy balance models. These thermal-based models 

rely on instantaneous thermal images that are not always 

available at desired temporal and spatial resolutions and 

which are frequently obscured by clouds (Long and Singh 
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2010; He et al. 2017; Anderson et al. 2021). The resulting 

time gap between two clear thermal satellite images and the 

alteration of surface temperatures by recent irrigation or pre-

cipitation events further confounds and adds uncertainty in 

ET modeling.

To overcome difficulties integrating ET and irrigation, 

a remote-sensing-based two-source surface energy bal-

ance (Backward-Averaged Iterative Two-Source Surface 

temperature and energy balance Solution; BAITSSS) was 

developed to incorporate soil water components within an 

energy balance framework (Dhungel et al. 2016, 2019a, 

2021). BAITSSS estimates surface temperature internally 

in the energy balance based on the weather, vegetation indi-

ces, vegetation physical properties, and soil moisture con-

ditions for each time step. Soil water from the root zone 

in BAITSSS was integrated using the Jarvis-type canopy 

resistance scheme (Jarvis 1976). BAITSSS needs informa-

tion related to field-scale irrigation (Irr) and precipitation 

(P) for soil water balance. BAITSSS uses either measured 

or estimated Irr based on soil hydraulic characteristics [soil 

moisture at field capacity (θfc) and wilting point (θwp)], and 

management allowed depletion (MAD). However, the water 

balance approach is also subject to uncertainty and chal-

lenges such as correct characterization of soil physical prop-

erties, stomatal response to environmental factors [either 

through Jarvis or Ball–Berry–Leuning model types (Ball 

et al. 1987; Leuning 1990, 1995)], rooting depth, and prior 

knowledge of field-scale irrigation timing and amount. Chal-

lenges remain to estimate accurate timing and the amount of 

applied Irr on a landscape scale by remote sensing techniques 

(Massari et al. 2021). The estimated Irr may not always con-

cur with the applied Irr in the field.

In previous work, the BAITSSS model was evaluated to 

lysimeter ET observations of corn and sorghum in an advec-

tive environment of Bushland, Texas (Dhungel et al. 2019a, 

2021). These studies showed the advantages of the energy 

balance model with water balance components for capturing 

the wetting and drying events from irrigation and precipita-

tion for precise hourly, daily, and seasonal ET estimation. 

However, the phenology and growing period of winter let-

tuce differ from corn/sorghum, thus requiring further model 

evaluation. Some specific challenges for ET modeling of let-

tuce are shallow root depth compared to grain crops (Escar-

abajal-Henarejos et al. 2015), short growing seasons (Tho-

rup-Kristensen 2001; Roux et al. 2016), and longer partial 

cover period. In most environmental conditions, full canopy 

cover coincides with peak reference ET. There is relatively 

less uncertainty in ET with an un-stressed full canopy cover 

crop, whereas there is greater uncertainty under partial cover 

coinciding with the initial stage and at the end-season (Kc 

ini and Kc end, where Kc is crop coefficient). With winter 

crop production, we have a situation where reference ET is 

highest during Kc ini and Kc end, so there is greater relative 

uncertainty. Furthermore, the timing of vegetative growth 

and meteorological demand is out phase for winter lettuce 

production in Yuma and other low desert regions.

Some of the earlier studies related to lettuce ET in the 

western United States were Johnson et al. (2016) in Salinas, 

California, and Johnson and Trout (2012) in California’s San 

Joaquin Valley. In these studies, Johnson and colleagues uti-

lized the FAO-56 Penman–Monteith reference ET model 

(Allen et al. 1998, 2005b) and normalized difference vegeta-

tion indices (NDVI)-crop coefficients to calculate ET. To our 

knowledge, the study of seasonal ET using remote sensing 

(Sentinel-2) based energy balance model for lettuce at the 

Lower Colorado River basin, has not been conducted. The 

overall objective of this study was to evaluate the ET of let-

tuce under well-watered conditions and to understand the 

dominant factors and challenges. Other questions we inves-

tigated were the influence of soil hydraulic characteristics 

in irrigation effectiveness and to final ET.

Materials and methods

Study area and evapotranspiration observations

The study area is in the Lower Colorado River Basin in 

Yuma County, Arizona. Elevation of Yuma Valley ranges 

from 24 to 44 m. Lettuce (September through January of 

next year) is one of the major cultivated crops of the Colo-

rado River Basin in the USA (Berardy and Chester 2017; 

Frisvold et al. 2018). The study area receives minimal pre-

cipitation (~ 80  mmy−1) (Arguez et al. 2010) with irriga-

tion supplied by the Colorado River. The study sites use 

sprinkler and furrow irrigation and are well watered. Both 

irrigation types are frequently adopted in the same site and 

season for lettuce cultivation. Sprinklers are used during 

crop establishment to create a cool microclimate and to help 

with crop establishment. Sprinklers are usually discontinued 

in ~ 14 days, with furrow irrigation used thereafter (Sanchez 

et al. 2009).

Twelve EC sites (within the range of 600  km2) between 

2016 and 2020 were used to evaluate model simulated ET 

(Table 1). The EC site deployments were similar to those 

described in French et al. (2020). System components com-

prised sonic anemometers from Campbell Scientific (Logan, 

UT), infrared gas analyzers from LICOR (Lincoln, NE), net 

radiometers from Kipp & Zonen (Delft, Netherlands), soil 

heat flux plates from Hukseflux (Delft, Netherlands), and 

air temperature and humidity probes from Vaisala (Helsinki, 

Finland). Loggers and covariance sensors were calibrated 

by the manufacturer in 2016 and 2017. Zero and span of 

infrared gas analyzers (IRGA) were done in July 2017 and 

again in July 2018.
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Each station collected micrometeorological observa-

tions (~ 108 variables per time step) at 20 Hz, configured 

under Campbell Scientific’s EasyFlux DL ™ (Logan, UT) 

program1 to allow continuous data measurements during 

the cropping cycle. Simultaneously 30-min block-averaged 

fluxes, including the Webb–Pearman–Leuning (Webb et al. 

1980) corrections were stored.

Raw data were processed with EddyPro software in 

Express Mode (Fratini and Mauder 2014). Changes in 

energy storage within the soil mass above the two heat flux 

plates were computed. Data spike removal followed the out-

lined methodology described by Vickers and Mahrt (1997). 

The online gap-filling tool (http:// www. bgc- jena. mpg. de/ 

~MDIwo rk/ eddyp roc/ method. php; employing techniques as 

described in Falge et al. (2001) and Reichstein et al. (2005) 

were used to fill time gaps including those when the friction 

velocity (U*) was less than 0.15  ms−1. Assessment of energy 

balance closure was done at daily time steps by regressing 

advective energy against radiative energy and correcting for 

net energy storage via photosynthesis (Anderson and Wang 

2014). Energy balance closure was enforced at 30-min time 

steps by assigning residuals to latent heat (LE) fluxes (Rosa 

and Tanny 2015). Two-dimensional flux footprint analyses 

were done using an R script provided by Kljun et al. (2015). 

With minor exceptions, 80% of the flux footprints lay within 

plot boundaries. Daily fluxes were computed by summing 

the 30-min LE flux values. Full details about the EC data and 

processing will be presented in a forthcoming paper (French 

et al. in prep.).

BAITSSS model

BAITSSS model is comprised of energy and soil water 

balance components connected in a series-resistance net-

work (Fig. 1). The full details of the BAITSSS model and 

equations can be found in Dhungel et al. (2016, 2019a, b). 

Here, we present a summary and equations of the model. 

BAITSSS couples these resistances with an aerodynamic 

equation to compute latent and sensible heat flux. It adopts 

the Jarvis scheme (Eq. 1) for estimating canopy resist-

ance (rsc) while soil surface resistance (rss) is estimated 

empirically using soil moisture at the surface (θsur) and 

saturation (θsat) (Shu 1982) (Eq. 2). The Jarvis-type rsc 

scheme considers weighting functions representing plant 

response to incoming solar radiation  (F1), air temperature 

 (F2), vapor pressure deficit  (F3), and soil moisture in the 

root zone  (F4). These weighting functions vary from 0 to 

1 with a minimum canopy resistance (rsc) of 40 m  s−1 and 

maximum resistance of 5000   ms−1. BAITSSS does not 

utilize FAO-56 reference ET  (ETo) to constrain maximum 

ET, however, it limits the values of resistances i.e., rss 

and rsc. The minimum rsc (Rc_min) was set to 40  sm−1 for 

irrigated agriculture (Lhomme et al. 1998; Kumar et al. 

2011; Zhang et al. 2014; Dhungel et al. 2019a) and the 

Table 1  Site locations, crop season, soil hydraulic characteristics, and year of lettuce for various sites over multiple years (2016–2020) at Colo-

rado River Basin region

Four out of twelve sites had complete weather data available at EC sites as indicated

SN  Figure Panel, EC  Eddy Covariance, AZMET  Arizona Meteorological Network, NGIDD  North Gila Valley Irrigation and Drainage District, 

YID  Yuma Irrigation District, YCWUA   Yuma County Water Users’ Association

SN Site Input data 

source for 

BAITSSS

Season Season 

length 

(days)

Latitude Longitude Field capacity Available 

water capac-

ity

Difference between 

applied water (P + Irr) 

and ET from EC

m3  m−3 m3  m−3 %

a NGIDD 19-20a EC 2019–2020 93 32.7485  – 114.5077 0.19 0.18 7.8

b YID 18b EC 2018–2019 87 32.6967  – 114.5375 0.32 0.20 15.4

c YCWUA 18a EC 2018 68 32.6562  – 114.6564 0.42 0.16 43.6

d YID 17a EC 2017 63 32.6974  – 114.5195 0.30 0.20  – 4.9

e YID 19-20a AZMET 2019–2020 100 32.7091  – 114.5227 0.19 0.18 39.7

f YCWUA 19-20a AZMET 2019 74 32.5801  – 114.7332 0.42 0.16 41.6

g YID 17d AZMET 2017 84 32.6972  – 114.5154 0.30 0.20 11.8

h YID 17b AZMET 2017 75 32.6973  – 114.5238 0.30 0.20 7.0

i YID 17c AZMET 2017 70 32.6972  – 114.5280 0.32 0.20  – 9.5

j YCWUA 17-18b AZMET 2017–2018 107 32.7065  – 114.7079 0.32 0.20 26.8

k YCWUA 17-18a AZMET 2017–2018 97 32.7207  – 114.7059 0.42 0.16 30.6

l YID 16 AZMET 2016 64 32.6935  – 114.5142 0.32 0.20 21.2

1 Mention of trade names or commercial products in this publication 

is solely for the purpose of providing specific information and does 

not imply recommendation or endorsement by the U.S. Department 

of Agriculture.
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minimum value of rss to 35  sm−1. BAITSSS and a similar 

two-source energy balance model (Anderson et al. 2007) 

use a logistic equation to calculate the effects of the avail-

able water fraction (AWF) on  F4 where AWF is computed 

based on θfc and θwp. These curves are used to define the 

points and periods of moisture-related stress to vegeta-

tion. Soil hydraulic characteristics play an important role 

to capture this non-linear process. Leaf area index (LAI) 

is rescaled by the fraction of canopy cover (fc), i.e., LAI 

 fc
−1 (Bohn and Vivoni 2016; Dhungel et al. 2019a). While 

these canopy characteristics are partially correlated, this 

scaling approach was found to more accurately account 

during partial cover period provided by the emergent 

canopy than using LAI alone. As the canopy approached 

full closure, effects of this adjustment diminish, and the 

original relationship is maintained as fc values approach 

unity (Dhungel et al. 2019a).

 

Irrigation in BAITSSS is applied when root zone mois-

ture (θroot) reaches a threshold moisture content. The 

threshold moisture content is computed from soil hydrau-

lic characteristics (θfc, θwp). In this study, actual irriga-

tion data were available and, thus, utilized by BAITSSS. 

BAITSSS differentiates irrigation as either applying water 

to both layers (soil layer and root zone) with sprinklers or 

furrow irrigation or only in the root zone as a sub-surface 

drip. None of the fields in this study used sub-surface 

(1)rsc =

Rc_ min

LAI

fc
F1F2F3F4

,

(2)rss = 3.5

(
𝜃sat

𝜃sur

)2.3

+ 33.5.

Fig. 1  The BAITSSS simulation energy balance scheme (a), mod-

els energy fluxes between plants (green), soil (brown), and air (light 

blue) components using two resistance networks, one for sensible 

heat (H, orange), another for latent heat (LE, blue), each connected 

to soil heat flux elements (G, black). s and c subscripts, respectively, 

denote for soil and canopy components. The soil water balance 

scheme includes a representation of soil water status (b). Symbols 

include: evaporation (E), transpiration (T), latent heat of vaporiza-

tion (λ), air temperature (Ta), soil surface temperature (Ts), canopy 

temperature (Tc), aerodynamic resistance (rah), soil surface resistance 

(rss), canopy resistance (rsc), aerodynamic resistance between the sub-

strate and canopy height (ras), bulk boundary layer resistance of veg-

etative elements in the canopy (rac), volumetric moisture content at 

saturation (θsat), volumetric water content at field capacity (θfc), volu-

metric water content at root zone (θroot), volumetric water content at 

wilting point (θwp), readily available water (RAW), and total available 

water (TAW) (color figure online)
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drip. With one exception (YID 17a), fields were irrigated 

through a sprinkler for the establishment and thereafter 

through furrow irrigation, and irrigation water was applied 

evenly to both layers for the entire root depth. A constant 

value of 0.45  m3  m−3 was used for θsat in all sites. The 

albedo was set to 0.2 for bare soil and to 0.15 for vegeta-

tion (Dhungel et al. 2019a).

Hourly weather data (solar radiation, air temperature, 

relative humidity, and wind speed) were acquired from both 

the Yuma Valley station of the Arizona Meteorological 

Network (AZMET, cals.arizona.edu/AZMET) (coordinates 

32.709828° N, 114.707521° W, and 36 m above sea level) 

and the EC stations. Four out of twelve sites had complete 

weather data available at EC sites while the rest of them 

were from AZMET (Table 1). AZMET data were used to 

supplement EC sites that only had a net radiometer and 

that lacked solar irradiance observations. The measurement 

height of weather data was 2 m for AZMET and 3 m for the 

EC site and applied accordingly while executing the model. 

Simulations from BAITSSS were carried out for hourly 

timesteps and later accumulated to a daily scale for com-

parison purposes. We chose to compare BAITSSS and EC 

at daily time scales because EC suffers energy imbalance 

and evapotranspiration hysteresis due to failure to account 

for heat and energy storage in an hourly timescale (Leuning 

et al. 2012; Dhungel et al. 2021); however, imbalance may 

not be completely eliminated to daily scale.

A soil surface depth of 150 mm (Allen et al. 2005a) and 

rooting depth of 500 mm for lettuce (Frisvold et al. 2018) 

were prescribed for the model for the entire simulation period. 

The simulation periods (planting to harvesting) varied for 

each of these sites, with the earliest and latest planting being 

September 13th [Day of year (DOY) 256] and November 19th 

(DOY 323), respectively. The minimum and maximum simu-

lation periods were 63 days and 107 days (Table 1).

We estimated fractional canopy cover (fc) from surface 

reflectance L2A Sentinel-2 data converted to normalized 

difference vegetation indices (NDVI) (Gutman and Ignatov 

1998). Further, the leaf area index (LAI) was estimated from 

NDVI using an empirical equation as no measured values 

were available.

We adopted area and depth-averaged soil hydraulic char-

acteristics (field capacity and available water capacity) 

based on the Soil Survey Geographic database SSURGO as 

described by Wieczorek (2014) (Table 2). The study sites 

showed large variations of soil hydraulic characteristics, 

with θfc ranging between 0.19 and 0.42  m3  m−3 and avail-

able water content (θawc) between 0.10 and 0.20  m3  m−3.

One of the challenges of soil water balance models like 

BAITSSS is to estimate reasonable initial soil moisture con-

ditions when no measured data are available. Data showed 

that irrigation was mostly applied for the first day after plant-

ing followed by multiple small irrigation events (< 20 mm) 

during initial planting period in all sites. Analysis during the 

last 15 days before the start of the simulation revealed that 

most sites received no precipitation (P), with the remainder 

receiving less than 15 mm. Therefore, a relatively dry soil 

profile of 0.01  m3  m−3 at the surface (150 mm) and residual 

moisture of wilting point moisture content (θwp) at the root 

zone were adopted as initial conditions for all sites.

We evaluated the impact of initial boundary conditions 

and input parameters, i.e., (a) initial soil moisture condi-

tions, (b) soil surface and root zone depth, (c) soil hydraulic 

(3)fc =
NDVI − NDVImin

NDVImax − NDVImin

.

Table 2  Water balance 

components of lettuce for 

various sites over multiple years 

(2016–2020) at Colorado River 

Basin region

Statistics depending on the NDVI range (< 0.3, >  = 0.3) were also shown. Data are reported for each crop-

ping season, which varied in length

SN Site Irrigation Precipitation ET from EC ET from 

BAITSSS

NDVI < 0.3 NDVI >  = 0.3

mm mm mm mm r2 RMSE r2 RMSE

a NGIDD 19-20a 308.6 32.3 314.1 270.1 0.67 0.97 0.46 0.80

b YID 18b 274.2 17.8 247.0 259.9 0.26 1.31 0.64 0.53

c YCWUA 18a 442.9 24.1 263.2 260.6 0.77 0.94 0.71 0.79

d YID 17a 257.0 0.0 269.7 251.6 0.38 1.43 0.45 1.27

e YID 19-20a 435.1 58.1 297.5 315.2 0.40 1.03 0.69 0.91

f YCWUA 19-20a 406.8 34.3 257.4 267.7 0.54 1.23 0.73 0.83

g YID 17d 281.2 1.3 249.0 263.5 0.32 1.90 0.56 0.93

h YID 17b 328.6 1.3 306.9 296.8 0.47 1.70 0.38 1.29

i YID 17c 243.1 1.3 267.6 232.8 0.69 1.13 0.08 1.25

j YCWUA 17-18b 411.5 2.0 302.8 381.0 0.36 1.13 0.42 1.44

k YCWUA 17-18a 335.3 2.0 234.1 285.2 0.76 079 0.08 1.46

l YID 16 310.3 1.3 245.6 257.6 0.47 1.27 0.44 0.99
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characteristics (θawc, θfc, and θwp), (d) vegetation indices 

(NDVI), canopy physical properties (LAI), and (e) weather 

data (AZMET vs. EC) in BAITSSS and then ET outputs 

were compared with observed EC. Parameters with poten-

tial for larger uncertainties (e.g., soil surface and root zone 

depth, initial soil moistures) were varied from lower to upper 

values with ~ 20% increase in each simulation. We also eval-

uated assumptions of identical soil hydraulic characteristics 

(for instance, θfc = 0.32 and θawc = 0.32 to all sites).

Results and discussion

Weather and vegetation indices

Seasonal variation of meteorological variables, vegeta-

tion indices, and canopy physical properties are shown in 

Fig. 2. As expected, solar radiation and air temperature 

decreased towards winter solstice and increased afterward 

into the new calendar year (Fig. 2a and d). Relative humid-

ity and wind speed showed dissimilar behavior, with lower 

relative humidity positively correlated with higher wind 

speed (Fig. 2b and c). At the start of the simulation, aver-

age flux (diurnal cycle; 24 h) of solar radiation among the 

sites was ~ 250  Wm−2, while at the end of the year was ~ 150 

 Wm−2. Similarly, the daily mean air temperature decreased 

from ~ 30° C to ~ 10° C during that period. Daily mean maxi-

mum observed values of solar radiation, wind speed, relative 

humidity, and air temperature were 271  Wm−2, 7  ms−1, 92%, 

and 34° C, respectively, among sites and years. Variations 

in NDVI and LAI among sites may be due to differences in 

planting densities. Some sites show a marginal decrease in 

vegetation indices after the peak vegetative cover, while the 

majority did not. Out of all fields, YID 17c had the lowest 

value of NDVI and LAI (Fig. 2e and f) and also showed a 

significant decrease after the NDVI peak. Lettuce crops are 

harvested at peak or close to peak vegetative cover; thus, a 

decrease in NDVI after peak is mostly due to the harvest 

Fig. 2  Daily mean weather variables (incoming solar radiation, wind 

speed, relative humidity, air temperature), and normalized difference 

vegetation index (NDVI) and leaf area index (LAI) of lettuce for vari-

ous sites over multiple years (2016–2020) at Colorado River Basin 

region. Mean values of weather variables among years and sites are 

shown in thick black color (color figure online)
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activities. The NDVI and LAI peaked during the same year 

as planting except for the last crops (Fig. 2e and f). The max-

imum value of NDVI and LAI were 0.92 and 5.5  m2  m−2, 

respectively. The NDVI and LAI values were smoothed with 

a 7-day convolution filter to reduce daily scatter. While solar 

radiation and air temperature mainly were decreasing, veg-

etation indices were increasing except for the late-planted 

ones. The mean P during the simulation period among the 

sites was 15 mm, while the mean Irr was 343 mm. Seven out 

of twelve sites received less than 5 mm precipitation during 

the entire simulation period (Table 2).

Evapotranspiration time series

The ET time series plot showed BAITSSS closely agreed 

with observed EC throughout the simulation period [both 

during the soil evaporation (NDVI < 0.3) and transpiration 

dominant regimes (NDVI > 0.3)] (Fig. 3). This NDVI crite-

rion is for visually differentiating (as indicated by symbol 

color) bare soil and the non-vegetated period from the veg-

etative period similar to Esau et al. (2016) and Qin et al. 

(2020). Evapotranspiration time series tended to follow the 

solar radiation and air temperature patterns where it mostly 

declined during the end of the year and gradually increased 

afterward (Fig. 3). The dominance of soil evaporation (E) 

during planting and the initial growing period (small fc) may 

also have contributed to this behavior. Due to multiple  Irr 

events, the growing period ET resembled the full canopy 

cover period indicating the importance of soil evaporation 

during the early growing period when reference ET was 

higher. As expected, large spikes in ET were observed after 

Irr and P, mostly during the partial canopy cover period. 

BAITSSS was able to closely capture these wetting and 

drying events the majority of the time. In some instances, 

spikes observed by EC were missed. For instance, a sudden 

spike of ET on DOY 278 (Fig. 3h, YID 17b) was missed by 

BAITSSS where no Irr or P was recorded during those days. 

This increase in ET was not supported by weather data. We 

suspected that the Irr event on that day may have not been 

recorded due to a corresponding increase in soil moisture; 

however, EC was able to capture this. In a different instance 

in the same site, ET from BAITSSS showed a large spike 

around DOY 320 mostly due to transpiration (T), however, 

no such spike was recorded by EC (Fig. 3h). The partitioned 

ET from BAITSSS for YID 17c (Fig. 3i) showed evaporation 

(E) was dominant for the entire simulation period. As indi-

cated earlier, this site not only had the lowest vegetation indi-

ces compared to other sites but also the vegetation indices 

significantly decreased after NDVI peak. Overall, BAITSSS 

was able to reasonably estimate ET for a wide range of soil 

moisture characteristics (Table 2) from low field capacity 

(0.19  m3  m−3; NGIDD 19-20a and YID 19-20a) to high field 

capacity (0.42  m3  m−3; YCWUA 18a and YCWUA 19-20a). 

However, it tended to slightly underestimate ET compared 

Fig. 3  Comparison of daily evapotranspiration (ET, green or brown), 

evaporation (E, black), transpiration (T, orange) from BAITSSS, eddy 

covariance (EC), applied irrigation  (Irr, black), and precipitation (P, 

red) of lettuce for various sites over multiple years (2016–2020) at 

Colorado River Basin region. ET varying on NDVI values indicated 

by symbol color (color figure online)
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to EC for certain time intervals during the simulation period 

(Fig. 3f, i). This may be because of the timing and duration 

of irrigation and precipitation events, soil moisture condi-

tions, and intrinsic differences between the two methods. 

Evapotranspiration from EC for YCUWA 17–18a stayed 

relatively stable and showed minimal response to some 

irrigation events compared to BAITSSS after the new year 

(Fig. 3k). The ET spikes from BAITSSS were similar to 

EC at the start of the simulation in the majority of sites 

though some differences were observed in some sites (YID 

17a, YID 17d). The maximum values of ET from EC and 

BAITSSS agreed closely within ~ 8.0 mm during the simu-

lation years. Results showed the timing accuracy of these 

applied Irr and P events were critical to precisely capture 

these wetting and drying events and ultimately to estimate 

accurate ET values mostly in the partial canopy period.

Johnson and Trout (2012) found mean daily lettuce ET of 

2.1 mm and maximum ET of 3.4 mm using satellite-based 

NDVI and reference ET for California’s San Joaquin Valley. 

They found the daily ET uncertainty was less than 0.5 mm 

(0.31 mm during development and 0.16 mm during mid-

season) with total seasonal uncertainty of + 10% when com-

pared to lysimeter-measured ET. The seasonal crop water 

consumption of lettuce (140 mm to > 400 mm) can vary 

based on climate types, irrigation methods, and crop man-

agement practices. For instance, the reported seasonal ET 

of lettuce was ~ 145 mm in Salinas Valley, California (Gal-

lardo et al. 1996), ~ 200–300 mm in Mesa, AZ (Erie et al. 

1982), and from Monterey Bay, CA (Veihmeyer and Hol-

land 1949), and > 400 mm in southern New Mexico (Sam-

mis et al. 1988), and low California desert land (Turini et al. 

2011). The estimated mean daily ET was 3.4 mm from EC 

and 3.5 mm from BAITSSS. Similarly, the mean seasonal 

ET was 271 mm from EC and 278 mm from BAITSSS. The 

estimated daily and seasonal ET of this study closely cor-

responded to the earlier studies.

Soil moisture and resistances

Inverse, non-linear, relationships between soil moisture 

and resistances are the foundation of the resistance-based 

modeling schemes (i.e., large soil moisture related to small 

resistance and vice versa). These estimated soil moisture 

and resistance provided the means of estimating ET. The rsc 

is affected by multiple factors  (F1,  F2,  F3, and  F4) including 

θroot and varies on an hourly scale. During the nighttime, 

rsc becomes large because of the lack of solar radiation  (F1 

becomes very small). The response of estimated soil mois-

ture to applied Irr and P is shown (Fig. 4), where the model 

predicted the large spikes at the surface (θsur) layer right after 

precipitation and irrigation. This response was because of 

the surface layer’s position and a shallower depth compared 

Fig. 4  Estimated daily mean soil moisture at surface (θsur, blue) and 

root zone (θroot, green or brown), applied irrigation, and precipitation 

of lettuce for various sites over multiple years (2016–2020) at Colo-

rado River Basin region. The θroot status is indicated by rsc values less 

than 100  sm−1 for 6 or longer hours during that day (green) or other-

wise coded in brown (color figure online)
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to the root zone, while this response was milder in the root 

zone. The θsur increased to saturation while θroot was limited 

to the field capacity (Fig. 4). It was because the total avail-

able water (TAW) that can be extracted by the vegetation 

is computed between θfc and θwp. The θsur rapidly declined 

after precipitation and irrigation events and reached the 

lower threshold and stayed low until the subsequent wetting 

events.

The color code (green) in θroot (Fig. 4) indicates the rsc 

values lesser than 100  sm−1 for 6 or more hours during that 

day. The purpose was to differentiate between days and peri-

ods where the rsc were small and large. In certain instances, 

when ET was underestimated by BAITSSS compared to EC 

(Fig. 3), it was evident that rsc values were larger to those 

periods (brown color-coded). This underestimation might 

be related to the stomatal closure pointing to Jarvis para-

metrization of overestimation of soil moisture deficit as well 

as structural differences between EC and BAITSSS. Com-

pared to other sites, YID 17c (Fig. 4i) showed relatively 

large rsc (> 100  sm−1) and small ET for the entire simula-

tion. It was because of smaller vegetation indices than the 

rest of the sites which mostly reduced the transpiration 

(Fig. 3i). During the period where vegetation indices were 

significantly less than seasonal maxima, namely planting 

and early growth, variations in rsc do not depend upon LAI 

or fc, but are function of differences in soil hydraulic char-

acteristics and initialization of θwp at the start of the simula-

tion. Indeed, the total contribution of transpiration to ET was 

negligible as fc was small (Figs. 3 and 4). During that period, 

ET was mostly controlled by soil evaporation which in turn 

depends on soil moisture at the top layer and soil surface 

resistance (rss). Soil evaporation showed some influence on 

θroot because the water balance at the root zone consists of 

both evaporation and transpiration and the adopted rooting 

depth of lettuce (~ 500 mm) was comparably shallower than 

other grain crops (~ 1000 mm).

Cumulative evapotranspiration

The time series plot (Fig. 5) and bar plot (Fig. S1) showed 

the cumulative values of Irr, P, and ET where ET from 

BAITSSS closely followed the observed EC throughout the 

simulation period. The differences in the cumulative ET 

values (BAITSSS-EC) ranged from  – 14% to 25% with a 

mean value of ~ 3% (50% of sites had cumulative ET differ-

ences less than ~ 5%). Results showed that some sites had 

higher irrigation efficiency than others. For example, YID 

18b (Fig. 5b) showed good agreement between BAITSSS 

and EC-observed ET as well as low differences between ET 

and applied water (Irr plus P) (~ 15%) (Table 2). However, in 

YID 19-20a (Fig. 5e), applied water was ~ 40% larger than 

the observed ET, and BAITSSS modeled ET showed good 

agreement with EC observations. Assessment of cumulative 

totals showed ET from both methods mostly agreed irrespec-

tive of the significant differences in applied water among 

the sites (Fig. 5). These cumulative plots illustrate when 

applied Irr diverged from ET. Additionally, some sites had 

larger cumulative ET during the period when evaporation 

was dominant (NDVI < 0.3). The maximum cumulative ET 

from EC was 314 mm for NGIDD 19–20a and BAITSSS was 

381 mm for YCWUA 17–18b, while the maximum value of 

applied Irr was 443 mm for YCWUA 18a. Applied water was 

larger than ET in all sites (for both EC and BAITSSS) except 

for YID 17a and YID 17c where ET from EC was slightly 

larger. It may be because of random errors in either irrigation 

measurements/recording or EC measurements. For YCWUA 

18a (Figs. 3c and 5c), more than 100 mm Irr was applied on 

the last day of the simulation, which created a large differ-

ence (44%) between applied water and ET from EC. The 

difference between the applied Irr and ET will be reduced if 

this Irr event was not included in the analysis.

Statistical performance

Correlations between ET from BAITSSS and EC are shown 

in Fig. 6, with coefficients of determination (r2) ranging 

from 0.34 to 0.75 and root mean square errors (RMSE) of 

0.87–1.49 mm  d−1 with an average RMSE of 1.1 mm  d−1. 

Statistics depending on the NDVI range (< 0.3, >  = 0.3) were 

shown in Table 2. The BAITSSS estimated ET values lie on 

both sides of the 1:1 line symmetrically both during partial 

and full cover period, thus showing low bias. Differences in 

BAITSSS and EC ET may have been contributed by multi-

ple factors including intrinsic behavior of models as well as 

the estimated resistances from BAITSSS (soil surface and 

canopy resistances) differing EC. These resistances are dif-

ficult to measure, and observations are not readily available. 

YCWUA 17-18a showed the lowest r2 (0.34) with RMSE 

of 1.23 mm  d−1 (Fig. 6k) and cumulative ET difference of 

21% (Fig. 5k). The overall accuracy in these twelve study 

sites slightly decreased (both RMSE and r2) when compared 

to the earlier study (two seasons) of corn (2016) and sor-

ghum (2014) with the lysimeter (RMSE = 0.68 mm  d−1 and 

r2 = 0.92). Large weighing lysimeter-measured evapotranspi-

ration (ET) is considered to be the most accurate (Evett et al. 

2012; Moorhead et al. 2019; Liu et al. 2019), nevertheless, 

it is not widely available. Eddy covariance systems are more 

available than lysimeters and easier to install in cooperating 

farmers’ fields.

The residual ET bias analysis (observed – predicted) was 

conducted (Fig. 7) using the Pearson correlation coefficient. 

Residual analysis showed the bias was evenly distributed 

over the range (similar to Fig. 6) which were mostly posi-

tively related. The coefficient of correlation (r) was weak 

(0.0 < r < 0.5) for the majority of sites with the largest r 

value being 0.40 for YCWUA 18a (Fig. 7c).
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BAITSSS needs information related to soil hydraulic 

characteristics, irrigation type, timing and amount, and 

rooting depth; such information may not be always avail-

able at the field level. As Irr was mostly applied on the first 

day (or second) of the planting to all sites, analysis showed 

uncertainties related to the initial soil moisture boundary 

condition (soil moisture at root zone) were minimal when 

compared to EC (cumulative values, RMSE and r2). The 

analysis showed the assumption of θroot at field capacity at 

the start of simulation showed no significant difference from 

the assumption of wilting point. However, the assumptions 

of significantly smaller soil moisture at the root zone during 

the start of the simulation tended to underestimate ET to 

the sites with high field capacity. This underestimation was 

because the applied Irr in the field was insufficient to have 

the soil moisture needed to avoid moisture-related stress in 

the Jarvis scheme. A root zone depth of 500 mm was able 

to reasonably mimic ET behavior. Significantly shallower 

rooting depth reduced ET during full cover due to the defi-

cient soil moisture conditions in some sites. A larger root-

ing depth (> 500 mm) showed minimal impact on the final 

ET as the model limits the Rc_min with 40  sm−1 irrespective 

of soil moisture and energy available status. Overall, the 

analysis showed some influence of these factors on the final 

ET, however, fundamental model behavior remained intact. 

Comparison of hourly surface temperature between infrared 

thermometer (IRT) and derived by BAITSSS was shown in 

Fig. S2 where BAITSSS followed closely to IRT with some 

exceptions.

In an earlier study, sensitivity analysis was conducted 

from the BAITSSS model to assess the accuracy of input 

parameters (weather and vegetation indices), where 

results showed parameter’s accuracy affected the final ET  

(Dhungel et al. 2019b). There was about a 15% overestima-

tion of ET using gridded input data (remote-sensing-based 

vegetation indices and gridded-based weather data) when 

compared to ground-based measured data.

The current study reaffirmed BAITSSS being stable as 

a surface energy balance model and was effective for esti-

mating ET of lettuce for an arid environment. It may be 

because of having the capability of accounting for the actual 

irrigation applied in the field. It showed a clear advantage of 

Fig. 5  Cumulative water from EC, BAITSSS, and applied irriga-

tion of lettuce for various sites over multiple years (2016–2020) at 

Colorado River Basin region. ET varying on NDVI values indicated 

by symbol color. Cumulative differences of ET between EC and 

BAITSSS are shown in % (color figure online)
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capturing the earlier period ET when fractional canopy cover 

was less, mostly when soil evaporation was dominant. Dur-

ing the full canopy period, both EC and BAITSSS closely 

agreed indicating the competence of the model during the 

period when soil radiation and air temperature were mostly 

declining. The minimum canopy resistance of 40  sm−1 uti-

lized in the model was able to mimic ET estimated from EC.

Conclusion

We evaluated ET from the BAITSSS model against twelve 

EC sites from 2016 to 2020 for vegetable crops (lettuce) 

grown in the arid environment of the Lower Colorado River 

Basin, USA for various soil moisture characteristics within 

several limitations (with no ground-based parameters such 

as soil moisture characteristics, fraction of canopy cover, 

etc.). Results showed Irr application and effectiveness var-

ied among the sites and within the identical soil hydraulic 

characteristics. Differences in planting dates and length of 

simulation made it difficult to quantify the impact of these 

soil hydraulic characteristics on final ET. BAITSSS simula-

tion showed some influence of initial soil moisture boundary 

conditions to the final ET depending on the soil hydraulic 

characteristics. However, Irr at the start of the simulation 

(first or second day) minimized the impact of initial soil 

moisture boundary conditions. Mean cumulative ET dif-

ferences between EC observations and model estimates 

were ~ 3% among the sites while applied water was 30% 

larger in 33% of the sites. BAITSSS was able to estimate 

relatively accurate ET when compared to eddy covariance 

observations of ET for lettuce whose phenology and grow-

ing period are comparatively different from grain crops. 

The study highlighted the importance of soil water balance 

components in energy balance, and the timing and amount 

of Irr to mimic the spikes and decrease of ET right after Irr, 

especially during the growing period. Furthermore, the study 

demonstrated the capability of BAITSSS for estimating ET 

Fig. 6  Scatterplots of daily evapotranspiration between BAITSSS 

and EC of lettuce for various sites over multiple years (2016–2020) at 

Colorado River Basin region. ET varying on NDVI values indicated 

by symbol color; linear regression (red lines) and one-to-one corre-

spondence (black dashed line) are also indicated (color figure online)
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without directly relying on the thermal-based surface tem-

perature. This intercomparison also indicates the usefulness 

and transferability of the model in data-limited conditions. 

Comparison of modeled E and T to observations (from flux 

variance partitioning of ET, microlysimeters, and other 

approaches) can help to identify the biases in ET if any. 

Availability of measured data (soil hydraulic characteristics, 

vegetation indices) and boundary conditions (soil moisture 

at the beginning and during simulation) will help to further 

understand and evaluate their role and can help to increase 

model accuracy.

Supplementary Information The online version contains supplemen-

tary material available at https:// doi. org/ 10. 1007/ s00271- 022- 00814-x.
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