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1  |  INTRODUC TION

Extensive permafrost thawing is currently underway in Arctic 
soils due to disproportionate Arctic region warming (Biskaborn 
et al., 2019). Previously frozen soil organic carbon (SOC) pools are 

entering active biogeochemical cycles and may be converted to 
greenhouse gases (GHGs; e.g., CO2, CH4; Biskaborn et al., 2019; 
Schuur & Abbott, 2011; Schuur et al., 2015). Up to 195 Pg C in the 
form of GHGs could be released from permafrost soils by 2100, 
with 2.03–6.21 Pg C from CH4 emissions (Schuur et al., 2013). 
CH4 represents approximately 30% of the total radiative forcing 
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Abstract
Arctic soils are marked by cryoturbic features, which impact soil-atmosphere methane 
(CH4) dynamics vital to global climate regulation. Cryoturbic diapirism alters C/N chem-
istry within frost boils by introducing soluble organic carbon and nutrients, potentially 
influencing microbial CH4 oxidation. CH4 oxidation in soils, however, requires a spatio-
temporal convergence of ecological factors to occur. Spatial delineation of microbial ac-
tivity with respect to these key microbial and biogeochemical factors at relevant scales is 
experimentally challenging in inherently complex and heterogeneous natural soil matri-
ces. This work aims to overcome this barrier by spatially linking microbial CH4 oxidation 
with C/N chemistry and metagenomic characteristics. This is achieved by using positron-
emitting radiotracers to visualize millimeter-scale active CH4 uptake areas in Arctic soils 
with and without diapirism. X-ray absorption spectroscopic speciation of active and inac-
tive areas shows CH4 uptake spatially associates with greater proportions of inorganic 
N in diapiric frost boils. Metagenomic analyses reveal Ralstonia pickettii associates with 
CH4 uptake across soils along with pertinent CH4 and inorganic N metabolism associated 
genes. This study highlights the critical relationship between CH4 and N cycles in Arctic 
soils, with potential implications for better understanding future climate. Furthermore, 
our experimental framework presents a novel, widely applicable strategy for unraveling 
ecological relationships underlying greenhouse gas dynamics under global change.
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from permafrost C emissions over the same period, highlighting 
the critical role of CH4 dynamics in Arctic soils (Schuur et al., 
2013). Moist SOC-rich Arctic cryosols under anaerobic conditions 
and abundance of low molecular weight organic acids promote 
methanogenesis, which favors net soil CH4 emission and relatively 
high soil CH4 concentrations (Yang et al., 2016). CH4 emissions 
may be mitigated by methanotrophic bacteria, which assimilate 
and oxidize CH4 as a C source. In the case of SOC-rich cryosols, 
low-affinity methanotrophs requiring CH4 concentrations higher 
than atmospheric concentrations (>100s ppmv compared with 
≈1.8–2 ppmv, respectively) may mitigate CH4 emissions, however 
these soils generally serve as net CH4  sources (Baani & Liesack, 
2008; Oh et al., 2020). In contrast, mineral-rich cryosols such as 
those found in Artic deserts (≈26% of Arctic land area) are lower 
in SOC, moisture and CH4 emissions than organic-rich cryosols 
(Whalen & Reeburgh, 1990). In mineral cryosols, high-affinity 
methanotrophs can actively take up CH4 at atmospheric CH4 con-
centrations (Rusley et al., 2019; Tveit et al., 2019). Accordingly, 
mineral cryosols serve as an important CH4 sink and play a key role 
in regulating Arctic CH4 dynamics as a net CH4  sink (Emmerton 
et al., 2014; Juncher Jørgensen et al., 2015; Lau et al., 2015; Oh 
et al., 2020). A 47% increase in CH4 uptake by polar desert soils 
is projected by 2100, suggesting mineral soils represent a critical 
offset to predicted rising GHG emissions from organic rich Arctic 
soils (Curry, 2009).

In Arctic soils, microbial CH4 oxidation is highly variable depend-
ing on local conditions of soil moisture, redox potential, and nutri-
ent speciation (e.g., Cu, N, P; Gray et al., 2014; Knapp et al., 2007; 
Perryman et al., 2020; Zhang et al., 2019). Furthermore, evidence 
suggests dissolved organic carbon (DOC) species in soils may play 
an important role in regulating CH4 oxidation in dry ecosystems 
(Sullivan et al., 2013). Within the context of Arctic desert soils, all 
these factors are influenced by widespread cryoturbic features, 
which locally alter soil moisture and nutrient, SOC, and DOC specia-
tion. This results from freeze-thaw processes, which can lead to con-
centric size-sorted features known as frost boils (i.e., frost heaving) 
as well as upward injection of DOC and nutrients from subsoils into 
higher soil horizons (i.e., diapirism), which may influence GHG dy-
namics (Brummell et al., 2015; Ota et al., 2020; Walker et al., 2004). 
For example, reduction in CH4 fluxes by cryoturbic diapirism have 
been linked to lower substrate availability and reduced SOC degrad-
ability (Ota, 2021).

Defining methanotrophic relationships and biogeochemi-
cal environments within soil media is complicated by the spatially 
heterogeneous distribution of soil properties and, therefore, bio-
logical activity at various spatial scales (Baveye et al., 2018). Non-
destructive, positron-emitting radiotracers can spatially resolve 
biological activity in soils (Kinsella et al., 2012; Thorpe et al., 2019; 
Vandehey et al., 2014). Positron-emitting radionuclides undergo a 
radioactive decay known as positron emission through which a par-
ent nuclide proton converts to a neutron, yielding a positron (0

1
�) and 

daughter atom (Equation 1). Positrons next undergo annihilation 

with electrons in the surrounding medium, producing two gamma 
rays (Equation 2; L’Annunziata, 2012).

Positrons or emitted gamma radiation may be detected to spa-
tially delineate radiotracer distribution. Use of positron-emitting 
radiotracers for spatially resolving microbiological activity in soils 
presents many advantages over activity-based assays or other im-
aging strategies. The short half-life of positron-emitting radiotrac-
ers (minutes to hours for several commonly applied radionuclides) 
limits tracer incorporation to active processes. Radiotracer-based 
imaging applies exceptionally low concentrations of chemically 
equivalent tracers, minimizing disturbance to system chemistry 
while allowing for non-destructive spatial resolution of activity 
within intact natural media (Schmidt et al., 2020). Here, we use 
positron-emitting [11C]CH4 as a functional tracer to pinpoint mi-
cron to millimeter-scale soil CH4 uptake through radiographic im-
aging of emitted 0

1
�. Active soil sample regions are then extracted 

for metagenomic and spectroscopic C/N speciation analyses to 
investigate the link between active microbial CH4 oxidation and 
local biogeochemical factors in diapiric and non-diapiric Arctic 
desert soils. Given observed relationships between GHG emis-
sions and local SOC speciation in Arctic and Subarctic soils, we 
hypothesize that diapirism will induce spatial association between 
microbial CH4 oxidation and distinct SOC species in these Arctic 
desert soils. Our novel radiotracer-guided spectroscopic and 
metagenomic analysis framework is used to probe this hypothesis 
of diapirism-induced spatial association between microbial CH4 
oxidation and SOC speciation in Arctic desert soils. We aim to 
better understand ecological factors that moderate biological CH4 
uptake in Arctic soils with respect to soil spatial heterogeneity. 
However, the range of radiotracers available as well as flexibility 
of dosing and downstream analyses are compatible with several 
processes relevant to global change ecology in a range of environ-
mental systems (Schmidt et al., 2020).

2  |  MATERIAL S AND METHODS

2.1  |  Field site and soil sampling description

Soils were collected from a High Arctic desert plateau 5  km 
southwest of Alexandra Fjord (78°51′N, 75°54′W) on Ellesmere 
Island, Nunavut (Bliss et al., 1994; Ota et al., 2020). Annual 
precipitation averages <50  mm and mean annual temperature 
ranges from −16 to −19°C (Bliss et al., 1994; Ota et al., 2020). 
Soils are classified as Regosolic Turbic Cryosols, reflecting weak 
horizon development, low SOC content, and cryoturbic frost 
boils across the field site (Brummell et al., 2012). Soils were sam-
pled from diapiric and non-diapiric frost boils. Diapiric frost boils 
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were delineated by an SOC increase greater than 0.2  log(%) in 
subsurface soils as determined by field visible and near-infrared 
reflectance spectrometry, indicating subsurface organic mat-
ter intrusion (Guy et al., 2015; Muller et al., 2017). Non-diapiric 
frost boils were classified by the absence of a subsurface SOC 
increase. Soils were collected from two diapiric and two non-
diapiric frost boils developed on dolomite and granite. In diapiric 
frost boils, soils were collected from depths corresponding to 
the highest SOC content within diapiric features and compara-
ble depths from non-diapiric frost boils. An additional soil used 
for probing the uptake of [11C]CH4 by a sterilized soil matrix 
was collected from a non-diapiric frost boil on dolomitic par-
ent material. The dominant soils at the Alexandra Fiord Dome 
site are Regosolic Turbic Cryosol or Turbic Cryosols have very 
high (25%–39% by mass) contents of coarse fragments (>2 mm), 
which preclude maintaining soil structure during collection 
and transport from field-to-lab (Canadian Agricultural Services 
Coordinating Committee, National Research Council Canada, & 
Canada, 1998; Food & Agriculture Organization of the United 
Nations, 2014; Muller et al., 2022). After collection, soil samples 
were frozen and stored at −20°C until use. Once in the labo-
ratory, coarse fragments (pebbles and rocks) were removed for 
reproducible radiographic imaging. Before use in this study, soils 
were air dried at room temperature for 48 h and then sieved to 
<2  mm. In so doing, we disrupted gross soil structure but re-
tained aggregate soil structures that are the focus of this study. 
Basic soil properties may be found in Table S1.

2.2  |  [11C]CH4 synthesis

[11C]CO2 (11Ct1/2 = 20.3 min) was produced by the 14N(p, α)11C re-
action through bombardment of a 99.5% N2, 0.5% O2  gas target 
with 18MeV protons for 5  min with a TR-24 cyclotron (Advanced 
Cyclotron Systems, Inc.) located at the Saskatchewan Centre for 
Cyclotron Sciences. This process yields a gas mixture, including ra-
dioactive 11C and 13N species, which required purification for [11C]
CO2 isolation and [11C]CH4 production. Nitrogen oxides were first 
trapped and removed using a previously described method (Tewson 
et al., 1989). [11C]CO2 was then collected on a 4 Å molecular sieve 
mixed with silica-supported nickel catalyst for separation from re-
sidual [13N]N2. To produce [11C]CH4 from captured [11C]CO2, the mo-
lecular sieve/catalyst trap with adsorbed [11C]CO2 was pressurized 
to 135 kPa with 99.9% H2 and heated to 350°C. After 2 min, synthe-
sized [11C]CH4 was released using an air push gas. Unreacted [11C]
CO2 was removed from this gas stream by an Ascarite trap (Thomas 
Scientific) and subsequently directed to a dosing chamber or gas bag 
for further application. [11C]CH4 yields were generally on the order 
of 1 × 10−11 moles for our synthesis and purification system. Soils 
were, therefore, assumed to be dosed with CH4 at concentrations 
approximating atmospheric CH4 concentration, as the concentration 
of added [11C]CH4 is several orders of magnitude lower than atmos-
pheric CH4.

2.3  |  Validating microbial [11C]CH4 uptake

Validation studies of [11C]CH4 uptake by methanotrophic bacteria 
used the model methanotrophic bacterium Methylomonas meth-
anica (American Type Culture Collection (ATCC), 51626) grown in 
160 ml serum bottles containing 70 ml of nitrate mineral salts me-
dium (ATCC medium 1306). Bottles initially had a 50% air and 50% 
CH4 headspace. Cultures were grown to mid exponential growth 
stage before [11C]CH4 uptake studies. Triplicate (n  =  3) bottles 
containing active M. methanica cultures, autoclaved M. methanica 
exponential growth phase cultures, and autoclaved growth me-
dium without M. methanica inoculation were used to evaluate [11C]
CH4 uptake through biotic and abiotic processes. Active M. meth-
anica and controls were dosed with [11C]CH4 by removing 22.7 ml 
of headspace gas from bottles and immediately adding 22.7 ml of 
[11C]CH4 in air drawn from a gas bag containing [11C]CH4, result-
ing in an approximately 63% air and 37% CH4 headspace. Bottles 
were then incubated for 1.5 h at room temperature. After incuba-
tion, 11.3 ml of culture or uninoculated growth medium was with-
drawn from bottles and placed in a well counter for radioactivity 
determination.

2.4  |  Soil incubation, dosing with [11C]
CH4 and imaging

Prior to [11C]CH4 dosing, soils were incubated to activate microbiota. 
14.5 g of dried and sieved soils were placed in polyethylene holders 
(50 mm diameter × 5.7 mm depth) and hydrated to 40% water filled 
pore space. Soils were then incubated at 25°C for 3 days, with water 
content maintained by daily additions of water as needed. A set of 
soils was sterilized after initial incubation using propylene oxide fu-
migation to test the influence of abiotic processes on uptake of [11C]
CH4 by soils (Wolf & Skipper, 2018). After incubation, soils were 
placed in a sealed chamber for [11C]CH4 dosing. Once soils were in 
the sealed chamber, air containing trace amounts of [11C]CH4 was 
flowed into the chamber and dosed for 30 min.

Radiographic imaging of [11C]CH4 uptake by soils entails an ex-
posure and revelation step to produce a two-dimensional image of 
radiotracer distribution. Soil samples were placed against an au-
toradiographic imaging film (Storage Phosphor Screen BAS-IP MS 
E2025, Cytiva Life Sciences) in the dark and exposed for 30  min. 
Films were then stored in a cassette until image revelation (within 
24 h) to prevent light exposure. Image revelation from exposed films 
was performed by scanning films (Typhoon imaging system; Cytiva 
Life Sciences) and subsequently digitizing images.

2.5  |  Image processing and extraction of active and 
background soils

Autoradiographic images were processed using the Fiji distribu-
tion of ImageJ (Abràmoff et al., 2004; Schindelin et al., 2012). 
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[11C]CH4 image pairs were cropped and co-registered with non-
soil background pixels removed. Pixel values were rescaled based 
on the radioactivity present at the time of imaging to facilitate 
activity comparisons among soils. For example, pixel values for 
one image initially ranged from 15 to 20,858 (unsigned 16-bit 
data, so the max is 216 or 65,536). The activity of synthesized 
[11C]CH4 was 2.88 GBq/L, so pixel values were rescaled from 0 to 
28,800. Images were imported into ERDAS Imagine (V9.23, Leica 
Geosystems) where unsupervised machine learning clustered 
similar pixels and to codify low-, medium-, and high-radioactivity 
regions in each soil (unsupervised classification, Iterative Self-
Organizing Data Analysis algorithm, 15 iterations, 0.99 conver-
gence, 30  classes, post-hoc merge to three classes; Irvin et al., 
1997; Tou & Gonzalez, 1974).

After classifying soil CH4 uptake activity regions, soil aliquots 
were extracted from samples for x-ray absorption near-edge 
structure (XANES) and metagenomic analyses. Aluminum spacers 
(4.5 mm OD, 3.2 mm ID, and 4 mm deep; McMaster-Carr, Prod. No. 
94669A097) were pressed with alcohol-sterilized tweezers into 
areas corresponding to one low (background) and two high (active) 
activity regions per sample for extraction. Prior to downstream anal-
yses, extracted soils within spacers were pressed with an alcohol-
sterilized stainless-steel piston for stability.

2.6  |  X-ray absorption spectroscopic analysis

Pressed soil samples were mounted without further modification for 
XANES analysis on the 11ID-1 Spherical Grating Monochromator 
beamline at the Canadian Light Source (Saskatoon, Saskatchewan, 
Canada). All post-hoc modifications to C and N spectra were 
performed in Athena (Ravel & Newville, 2005). C and N K-edge 
XANES spectra were deconvoluted and relative C/N functional 
group concentrations were determined using a Gaussian curve fit-
ting procedure in Fityk (Fityk V1.2.1; Dhillon et al., 2017; Wojdyr, 
2010). C spectra were fit with components corresponding with 
unsaturated/quinone, aromatic, phenolic/heterocyclic/substituted 
aromatic/ketone, aliphatic, carboxylic, alkyl/alcohol/ether, and 
carbonate C functionalities (Table S2; Dhillon et al., 2017; Gillespie 
et al., 2015; Myneni, 2002). N spectra were fit with components 
corresponding with N in 6 and 5  member heterocyclic aromatic, 
amide, pyrazole/pyrrole/urea, five member rings with unpaired 
electrons, aromatic substituent groups, inorganic, and alkyl bond-
ing environments (Table S2; Gillespie et al., 2011; Leinweber et al., 
2007; Myneni, 2002; Urquhart et al., 1995). Further details re-
garding collection, processing, and analysis of XANES spectra are 
found in the Supporting Information. Low sample numbers probed 
for each treatment combination, due to limitations of synchrotron-
based spectroscopic approaches, prevented rigorous statistical 
analyses of XANES data. Further considerations regarding sta-
tistics and spatial relationships in X-ray absorption analysis, see 
Dynes et al., 2015.

2.7  |  Soil DNA extraction and sequencing

DNA was extracted from isolated regions of active [11C]CH4 uptake 
for downstream metagenomic analyses. For comparison against 
inactive soils, DNA was extracted from bulk soils, rather than iso-
lated background regions, to ensure enough DNA was obtained. Soil 
DNA was isolated from soil samples using the FastDNA™ SPIN Kit 
(MP Biomedicals). Extracted DNA was quantified using a Qubit® 
2.0 fluorimeter with dsDNA HS Assay Kit (ThermoFisher).

DNA quality and average fragment length were determined 
using TapeStation with Genomic DNA reagents (Agilent). Libraries 
were constructed using an Illumina DNA prep kit with 16 unique 
dual indices (Illumina) and quantified by a Qubit dsDNA BR assay 
kit (Invitrogen). Library pools were diluted for optimal cluster den-
sity against a 1%PhiX control. A High Output kit was used with a 
NextSeq 550 sequencer system (Illumina) to generate approximately 
350 million yield pairs for downstream quality filtering and analyses.

2.8  |  Shotgun metagenomic sequencing analyses

SqueezeMeta v. 1.2.0 pipelines were used for assembly, taxonomic, 
functional, and bin analyses (Tamames & Puente-Sánchez, 2019). The 
pipelines used the co-assembly mode option to pool reads before as-
sembly using Megahit (Li et al., 2015). Functions were assigned using 
Diamond Blastx alignments of reads against Clusters of Orthologous 
Groups of proteins and KEGG databases using lowest common an-
cestor and fun3 methods (Buchfink et al., 2015; Clark et al., 2016; 
Huson et al., 2007; Kanehisa, 2000; Tatusov et al., 2003).

To remedy some of the pitfalls associated with genomic data, we 
applied a series of data filters (Figures S1 and S2) to ensure a ro-
bust dataset with sufficient inferential power (Allen et al., 2016; Hua 
et al., 2019; Mamet et al., 2021; Qin et al., 2020; Schimel & Schaeffer, 
2012). Following data filtering, taxa abundance data were converted 
to relative abundances. Initial analyses indicated little difference 
between microbial composition and diversity of [11C]CH4 hotspots 
(Figure S3), so these data were combined and compared with micro-
bial communities in bulk soils. Taxonomic relationships were probed 
using a cladogram produced using the ape package in R (package v. 
5.4-1) and visualized using ggtree v. 2.2.4 (Paradis & Schliep, 2019; 
Yu, 2020).

The number of taxa estimated using contigs was 4428 and re-
duced to 183 through data filtering (Figure S1). Taxa classified 
to genus but not to species were merged for each genus (e.g., 
“Unclassified Burkholderia” and “Burkholderia sp.”) and similar for 
taxa classified to Phylum but no further (e.g., genus: “Unclassified 
Actinobacteria,” and species: “Actinobacteria bacterium” or 
“Unclassified Actinobacteria”). This agglomeration further reduced 
the number of taxa to 76. Here we specifically found a Ralstonia spe-
cies (R. pickettii) was 149-fold more abundant in hotspots (M = 12%) 
relative to background (0.08%) and was highly connected to other 
taxa (Figure S4). Therefore, we explored KEGG pathways related to 
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C, CH4, and N metabolism in Ralstonia bins. Of the 81 pathways of 
interest, 18 were present in Ralstonia. We then compared normal-
ized abundance of KEGG genes related to C, CH4 and N in Ralstonia 
bins using generalized linear models. Additional details related to 
metagenome data classification, filtering, and gene abundance com-
parisons are found in the Supporting Information. It should be noted 
that in this study, we elected to use non-amplicon-based methods 
to avoid primer biases with the drawback that rare but important 
members of the community may be screened out.

3  |  RESULTS

3.1  |  [11C]CH4 is a suitable radiotracer to visualize 
biotic soil CH4 uptake

Radioactivity measurements of active cultures and controls showed 
a greater uptake of [11C]CH4 by active M. methanica cultures rela-
tive to sterile growth media and autoclaved M. methanica cultures 
(Figure 1) after incubating 1.5 h. This suggests isotopic substitution 
of 12C with 11C did not preclude biological CH4 oxidation and that 
the radioactivity levels applied were low enough to not halt biologi-
cal activity. Abiotic [11C]CH4 uptake into control solutions occurred 
to a lower extent than in active M. methanica cultures. Although CH4 
does not partition strongly into aqueous solutions (k◦

H
 = 1.3 × 10−3 

mol kg−1 bar−1), the high CH4 concentration in headspaces likely fa-
vored some CH4 solvation (Linstrom, 1997).

These findings extended to the validation of radiographic imag-
ing methodology used in our study. Radiographic images of an ac-
tive and a sterilized control soil collected from our field site showed 
that the active soil uniformly took up [11C]CH4, whereas the same 
soil matrix subject to fumigant sterilization did not appear to retain 
[11C]CH4 (Figure 1). This indicates that abiotic CH4 uptake by soils is 
negligible compared with biotic uptake under conditions employed 

here and imaged [11C]CH4 uptake regions likely represent zones of 
biological CH4 uptake.

3.2  |  CH4 uptake in Arctic desert soils is 
heterogeneous at sub-millimeter to millimeter scales

Radiographic imaging of [11C]CH4 uptake by diapiric and non-diapiric 
soils revealed active CH4 uptake in all soils (Figure 2). Activity was spa-
tially heterogenous and localized within distinct regions ranging from 
the submillimeter to millimeter scale. Diapirism does not seemingly 
influence the size or distribution of biologically active CH4 uptake 
sites. Given the uniform hydration of soils, and the soil dosing meth-
ods, spatial heterogeneity of CH4 uptake is likely driven by localized 
microbiological and/or biogeochemical, rather than physical, factors 
in our system. At the atmospheric CH4 concentrations implemented 
for dosing all soils, it is likely that imaged uptake regions correspond 
with high-affinity methanotrophic activity rather than low-affinity 
methanotrophy. Low-affinity methanotrophs would unlikely be able 
to efficiently assimilate CH4 under dosed concentrations.

Prior to localized XANES biogeochemical speciation and metag-
enomic analysis of soils, raw radiographic images were classified on 
a continuum of [11C]CH4 uptake (Figure 2). To compare C/N biogeo-
chemistry and microbiology between biologically active and back-
ground regions of soils, aliquots corresponding with background 
(low) and active (high) [11C]CH4 uptake were extracted from each 
imaged soil for XANES and metagenomic analyses (Figure 3).

3.3  |  Positron-emitting radiotracers spatially link 
CH4 oxidation with distinct N speciation

SOC speciation was not influenced by diapirism or CH4 uptake activ-
ity. Similar to a previous study on Subarctic SOC characterization, 

F I G U R E  1  (a) Radioactivity measurements of live inoculated, uninoculated, and autoclaved control inoculated growth media after 1.5 h 
incubation with a 63% air/37% CH4 headspace labelled with trace [11C]CH4 (n = 3). Error bars represent standard deviations from the mean. 
(b) Radiographic images of an active and fumigated Arctic desert soil incubated with air labelled with trace [11C]CH4 for 30 min
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speciation shows prevalence of carboxyl, aliphatic, aromatic, and 
heterocyclic/phenolic/ketone organic SOC (i.e., excluding carbon-
ate features) functional groups in these Arctic soils (Figure S5a–d; 
Dhillon et al., 2017; Gillespie et al., 2014; Myneni, 2002). Spectrum 
areas corresponding with functional groups generally follow a trend 
of carboxyl > aliphatic ≈ aromatic ≈ heterocyclic/phenolic/ketone > 
alkyl C-O > quinone/unsaturated C (Figure S5a–d). Averaged across 
all extracted background and active uptake soil aliquots from diapiric 
and non-diapiric soils, all functional groups correspond with similar 
spectral proportions, suggesting SOC speciation is not influenced by 
diapirism (Figure S5a).

Diapirism influenced N speciation in these soils. N speciation 
in non-diapiric soils was dominated by inorganic N species (e.g., 
NH4

+ and NO3
−) with smaller contributions from organic N func-

tional groups (e.g., heterocyclic N, N bound to aromatic species and 
amide N; Figure S6a; Gillespie et al., 2011; Leinweber et al., 2007; 
Myneni, 2002; Urquhart et al., 1995). Diapiric soils had a lower 
inorganic N proportion relative to non-diapiric frost boils, with a 
higher proportion of organic N functionalities in diapiric soils, spe-
cifically N bound to aromatic groups, N with unpaired electrons in 
ring structures, and N within five-member heterocycles. N specia-
tion differences between background and active [11C]CH4 uptake 
regions across imaged soils were modest compared with the effect 
of diapirism on N speciation (Figure S6b). More constrained com-
parison between N species on diapiric and non-diapiric frost boils 
indicates diapirism influences spatial association between active 
and background soil regions (Figure 4). Diapirism favors a spatial 
association between methanotrophy and greater proportion of in-
organic N.

3.4  |  Positron-emitting radiotracers spatially 
resolve taxonomic and functional traits related to 
CH4 metabolism in active soils

The SqueezeMeta pipeline produced 640,518,010 reads in total, 
ranging from 22,517,278 to 100,905,292 reads per sample (sample 
mean = 53,376,501). Rarefaction curves indicated sufficient coverage 
depth, levelling at approximately 2,000,000 reads (Figure S7). Data 
filtering reduced the number of KEGG pathways and taxa by 69% 
and 96%, respectively (Figure S1). Interestingly, proteobacterial taxa 
previously associated with high-affinity methanotrophy in soils were 
absent in the filtered dataset (Holmes et al., 1999; Lau et al., 2015; 
Tveit et al., 2019). This suggests other taxa may play an active role 
in CH4 uptake in these soils. Of the filtered species, R. pickettii was 
present in relatively high abundances in soil regions corresponding to 
[11C]CH4 uptake across all soils 149-fold relative to bulk soils (12% vs. 
0.08%; Figure 5). Several other taxa were notably differentially abun-
dant between the two soils (>100-fold), though were of sufficiently 
low relative abundances (<0.5%) that downstream analyses focused 
on R. pickettii.

Several CH4 metabolism-related genes detected within R. pick-
ettii were enriched in [11C]CH4 uptake hotspots relative to bulk 
soils. Gene enrichment related to direct CH4 uptake (e.g., particu-
late methane monooxygenase) may have occurred in non-diapiric 
samples with pmoC only detected at ≈1 tpm in [11C]CH4 uptake 
regions. Trace detection in four distinct [11C]CH4 uptake regions 
compared with absence in background indicates biologically 
meaningful detection. In diapiric soils, pmoC (present at ≈75 tpm) 
did not differ between background and [11C]CH4 uptake hotspots. 

F I G U R E  2  Raw (top) and classified (bottom) radiographic images of [11C]CH4 uptake by Arctic desert soils. Dolomitic and granitic parent 
material are denoted in sample codes by D and G, respectively. The presence of diapiric (Y) or absence of diapiric features (N) in soils is also 
denoted by sample codes



    |  7SCHMIDT et al.

No other methane monoxygenases were present in the filtered 
dataset. In contrast, downstream formaldehyde assimilation into 
formate, ribulose monophosphate (RuMP), serine, and tricarbox-
ylic acid (TCA) cycle fluxes, as well as cyanate-carbamate and 
glutamate synthase (GOGAT) N metabolism fluxes were consis-
tently present and enriched in [11C]CH4 uptake hotspots (Figure 6; 
Kanehisa, 2000).

Although no CH4 metabolism-related genes enriched in [11C]CH4 
uptake hotspots directly encode for inorganic N transporters, there 
are connections between specific CH4-related metabolic pathways 
in R. pickettii and inorganic N. For example, GOGAT pathway genes, a 
possible pathway for microbial ammonium incorporation into amino 
acids (Geisseler et al., 2010), are enriched in R. pickettii within active 
zones of CH4 uptake. Enrichment of another N-related metabolic 

F I G U R E  3  Experimental framework diagram showing processed radiographic image with delineated background and active [11CH4] 
uptake soil regions, representative C- and N-XANES spectra with model components from an active soil aliquot and outputs from 
metagenomic analyses from extracted soils

F I G U R E  4  Averaged N-XANES speciation results with comparisons between soil aliquots: (a) background (n = 2) and active (n = 4) regions 
on non-diapiric soils and b) background (n = 2) and active (n = 4) regions on diapiric soils. Error bars for both plots represent standard errors 
of averaged values
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gene was notably observed in R. pickettii within active [11C]CH4 up-
take regions. The gene coding for cyanate lyase was also enriched in 
[11C]CH4 uptake hotspots. Cyanate lyase catalyses cyanate transfor-
mation to carbamate, which may convert to NH3 and CO2 (Johnson 
& Anderson, 1987; Mooshammer et al., 2021). While this may be 
an important NH3 source for microorganisms, low concentrations of 
cyanate (≈pmol g−1 soil) and its transient nature (Mooshammer et al., 
2021) preclude use of N-XANES for identification in soils.

4  |  DISCUSSION

4.1  |  Radioisotope imaging bridges the gap 
between metagenomic and chemical speciation in 
CH4 uptake hotspots

Our C XANES spectroscopic results contrast with previous 
spectroscopic characterization of SOC in Arctic desert frost 

F I G U R E  5  Taxonomy and relative abundances of the desert soil microbial communities. The tree represents a radial taxonomy of the 76 
unique archeal (n = 3), bacterial (n = 72), and fungal (n = 1) taxa. Taxa labelled in bold were >10-fold more abundant in [11C]CH4 hotspots 
relative to background (bulk) soil. Ralstonia pickettii relative abundance is highlighted
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boils, which showed relative enrichment of polysaccharide and 
aromatic-rich SOC constituents in diapiric frost boils (Ota et al., 
2020). SOC speciation is similar within active [11C]CH4 uptake 
regions compared with background regions, even under more 
constrained comparison (Figure S5b), indicating SOC speciation 
does not spatially relate with CH4 uptake across these Arctic de-
sert soils at spatial scales probed, regardless of diapirism (Figure 
S5c). While not previously studied, N XANES speciation of diapiric 
and non-diapiric frost boils is consistent with diapiric transloca-
tion. These processes transfer dissolved organic species upward 

into soils, lowering inorganic N proportionally in regions of dia-
piric influence. These results indicate soil N species may be more 
transformation-prone than C in these soils. It is also conceivable 
that N-XANES spectroscopy is more sensitive to differences in 
speciation relative to C-XANES spectroscopy.

The greater relative proportion of inorganic N species in active 
CH4 uptake regions in diapiric frost boils reflects previously de-
scribed links between methane oxidation and inorganic N species 
in soils. Inorganic N species are a key methanotrophic activity mod-
ulator with soil CH4 uptake enhanced by increased inorganic N in 

F I G U R E  6  Simplified pathways for methane and nitrogen metabolism in Ralstonia pickettii. Grey circles indicate significant fold-changes 
in KEGG function gene abundance from background to methane hotspots determined through autoradiographic analysis of High Arctic 
soils. Dashed lines specify which pathways correspond to the fold-changes. Methane/carbon metabolism pathways and genes are as 
follows: 1. S-formylglutathione hydrolase [EC:3.1.2.12], frmB, ESD, fghA. 2. S-(hydroxymethyl)glutathione dehydrogenase [EC.1.1.1.284], 
frmA, ADH5, adhC. 3. Phosphogluconate dehydratase [EC:4.2.1.12], edd. 4. Fructose-bisphosphate aldolase, class II [EC:4.1.2.13], FBA, 
fbaA. 5. Malate dehydrogenase [EC:1.1.1.37], mdh. 6. Citrate synthase [EC:2.3.3.1], CS, gltA. Nitrogen metabolism pathways and genes: 7. 
Glutamate synthase (NADPH) large chain [EC:1.4.1.13], gltB. 8. Cyanate lyase [EC:4.2.1.104], cynS. RuMP, ribulose monophosphate cycle. 
Ammonium assimilation pathways: GDH, glutamate dehydrogenase; GOGAT, glutamine 2-oxoglutarate amidotransferase; GS, glutamine 
synthetase
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N-limited environments (Bodelier & Laanbroek, 2004; Mohanty 
et al., 2006). Suppression, however, may be linked to NH4

+ com-
petition with CH4 for active sites on methane monooxygenase en-
zymes, which catalyze NH3 oxidation (Bodelier & Laanbroek, 2004). 
Furthermore, methanotrophic NH3 oxidation may form toxic com-
pounds, including hydroxylamine and nitrite (Bodelier & Laanbroek, 
2004). A spatial relationship between active CH4 uptake and inor-
ganic N species indicates that enhancement of methanotrophic 
activity, rather than suppression, may have a greater influence in 
diapiric frost boils. Given the implications of diapirism for soil C/N 
biogeochemistry (i.e., greater SOC and nutrient concentrations) and 
previous results linking SOC composition with GHG fluxes in cryo-
turbic Arctic soils, the spatial association between active CH4 uptake 
and higher inorganic N proportion is counter to our hypotheses that 
a diapirism-induced link between C speciation and active CH4 oxida-
tion would be observed.

Despite indications that R. pickettii was involved in CH4 uptake 
by these soils, we found no previous studies describing R. pickettii 
as part of active CH4 cycling in soils. Ralstonia represents a diverse 
genus of Proteobacteria found widely in soils, waters, and sediments. 
Ralstonia have been tentatively connected with CH4 oxidation in 
sub-Arctic lake sediments (Martinez-Cruz et al., 2017). Furthermore, 
CH4 metabolism-related functions were identified in methylotrophic 
Ralstonia species and taxonomic groups formerly associated with the 
Ralstonia genus (Doronina et al., 2001; Friedebold & Bowien, 1993; 
Habibi & Vahabzadeh, 2013; Miyake-Nakayama et al., 2006). These 
previous studies indicate a relationship between R. pickettii is con-
ceivable, albeit tentative. This suggests the role of R. pickettii in soil 
CH4 cycling, particularly Arctic soils, may warrant further investi-
gation Our findings here coupled with those of previous studies, 
suggest that the dynamics of high-affinity methanotrophs found in 
mineral cryosols are likely very different from the low-affinity meth-
anotrophy that occurs in high-methane environments like peatlands 
(Rusley et al., 2019).

Functional characteristics of R. pickettii within active uptake 
CH4 regions relate well to N-XANES speciation. Enrichment of 
GOGAT pathway genes, versus gene enrichment directly related to 
the lower-affinity, less costly, glutamate dehydrogenase pathway 
(Geisseler et al., 2010), aligns with low nutrient status in these Arctic 
desert soils. In low nutrient availability soils, the energetic trade-off 
of higher-affinity N acquisition strategies is conceivable and high-
lights N availability influence on microbial dynamics in Arctic desert 
soils. This corresponds with localized N-XANES speciation, which 
showed a spatial preference for active CH4 uptake in regions of 
greater inorganic N proportion on diapiric frost boils.

4.2  |  Implications for findings and methodology

We demonstrate that diapiric features in Arctic desert frost boils 
impose spatial relationships between CH4 uptake and inorganic 
N species not observed in non-diapiric soils. This observation, 
coupled with high-affinity NH4

+ assimilation gene enrichment in a 

Ralstonia species within CH4 uptake hotspots, provides evidence 
for the disputed positive relationship between inorganic N and 
soil CH4 oxidation (Bodelier & Laanbroek, 2004). Metagenomic 
results inform ecology of Arctic CH4 cycling by connecting soil 
CH4 uptake with R. Pickettii, despite possessing an incomplete 
CH4  metabolism pathway. These results contrast with our hy-
pothesis that CH4 oxidation would spatially associate with distinct 
C species previously related to GHG dynamics in cryodisturbed 
Arctic soils.

Our work highlights the relationship between pedogenic cryo-
turbation processes and how these soil properties mediate bio-
geochemical drivers of GHG fluxes in Arctic desert soils. These 
interactions are particularly important as Arctic deserts are 
expected to serve as an increasingly large CH4  sink with Arctic 
temperature increases and because cryoturbic features are antici-
pated to become more prevalent with more frequent freeze-thaw 
cycles (Klaus et al., 2013). Coupled with an expected increase of 
terrestrial N in the Arctic under future climate scenarios, either by 
enhanced biological N2 fixation with higher temperatures (Chapin 
et al., 1992) or increasing extreme precipitation events over the 
Arctic leading to greater atmospheric N deposition (Choudhary 
et al., 2016; Kühnel et al., 2011), interactive N, and GHG dynamics 
within cryoturbic soils may be a critical factor for future predic-
tions of Arctic soil C cycling.

We can now visualize and isolate regions of biogeochemical ac-
tivity in soils for subsequent metagenomic and spectroscopic char-
acterization using a novel radiotracer, XANES, and metagenomic 
approach. This framework probes convergent spatial relationships 
between active CH4 uptake and localized microbiological/chem-
ical speciation, yielding new insights into GHG cycling in Arctic 
desert soils. With the range of positron-emitting radionuclides/
chemistries available at production facilities worldwide (see IAEA.
org; Database of Cyclotrons for Radionuclide Production), imaging 
technologies (e.g., autoradiography, positron emission tomogra-
phy), and flexible interface with complimentary analyses, this ap-
proach is generally applicable to many biotic processes within the 
context of global change. Plant or soil dosing with other available 
radiotracers (e.g., [11C]CO2, [11C]-sugars, [13N]N2, [13N] NO3

−, [13N]
N2O) makes studies on other critical processes related to GHG dy-
namics accessible (e.g., respiration, C/N-fixation, denitrification; 
Schmidt et al., 2020). With respect to approaches employed here, 
X-ray absorption techniques are available at synchrotron facili-
ties worldwide and provide chemical speciation for elements in-
volved, directly or peripherally, in these processes. Furthermore, 
short radionuclide half-lives make repeated dosing and imaging of 
a single sample or subject under manipulated environmental con-
ditions possible, serving as a powerful tool for probing biological 
responses to a changing climate.
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