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A B S T R A C T

Monitoring and mapping soil salinity are valuable for irrigation management and reclamation of salt-affected 
agricultural soils in arid and semi-arid regions. Proximal measurements of apparent soil electrical conductivity 
(ECa) can help characterize soil salinity spatial distributions. However, ECa is not solely a function of salinity. ECa 
is strongly influenced by soil salinity, water content, and edaphic properties such as texture and bulk density. 
Consequently, monitoring and mapping salinity based on geospatial ECa measurements is challenging in fields 
with dynamic and spatially complex patterns of salinity and water content, such as occurs under drip irrigation. 
We conducted a numerical modeling study to evaluate protocols for using proximal ECa sensing in drip irrigated 
systems, focusing specifically on the measurement distance from the drip-line that consistently identifies areas of 
high salinity in the rootzone. The measurement distance was evaluated as a function of six irrigation manage-
ment parameters: soil hydraulic conductivity, irrigation discharge, irrigation interval, solute concentration, root- 
zone volume, and leaching fraction. HYDRUS-2D was used to run a 729 member ensemble of drip irrigation 
simulations of water and solute dynamics under different irrigation management scenarios. Two case studies 
were simulated for clay loam soil: (1) low salinity soil irrigated with high salinity irrigation water and (2) high 
salinity soil irrigated with low salinity water. Depth-averaged ECa measurements down to the 75 and 150 cm 
depths, such as can be obtained using an electromagnetic induction (EMI) sensor, were evaluated in the simu-
lations. According to the ensemble results, a reliable EMI measurement distance from the drip-line was about 
100 cm for the case of low salinity irrigation in saline soil and adjacent to the drip-line for the high salinity 
irrigation. The ensemble ECa and EC of saturated paste extract (ECe) distributions were twice as sensitive to the 
irrigation water salinity level as compared to the other irrigation management parameters. The probabilistic 
ensemble approach can be extended to a variety of case studies to aid soil scientists and agricultural consultants 
monitoring and mapping soil salinity with ECa-directed soil sampling for micro-irrigation systems.   

1. Introduction

In arid and semi-arid regions, the salt content of soils is a major
concern due to its impact on agricultural productivity and sustainability. 
High levels of soil salinity adversely affect crop growth and yield, soil 
and water quality, and can ultimately result in soil erosion and land 
degradation (Rhoades et al., 1990; Corwin and Lesch, 2003). As a major 
agricultural concern, it is essential to monitor soil salinity at an early 
stage to effectively use soil resources and maintain soil salinity below 
the salt stress threshold of crops. 

The standard quantitative measure of soil salinity is the electrical 
conductivity of the saturated soil-water paste extract, ECe (Corwin and 

Yemoto, 2020). However, direct measurement of ECe is time-consuming, 
labor-intensive, subject to analytical error, and costly. Consequently, for 
field-scale inventories and monitoring of soil salinity, geophysical 
methods are usually employed to measure in situ bulk soil electrical 
conductivity or resistivity, which can be used as a predictor variable to 
estimate ECe. One popular geophysical instrument for detecting soil 
salinity is the electromagnetic induction (EMI) sensor. EMI proximal 
sensors are easily mobilized and do not require direct contact with the 
soil, which permits traversing growing crops (Corwin and Lesch, 2005a). 
EMI sensors provide measurements of depth-weighted apparent bulk 
electrical conductivity (ECa). Typically, readings are taken with the in-
strument in horizontal (EMh) and vertical (EMv) dipole orientations, 
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providing two depth-averaged measurements of ECa with differing 
depth-weighted response functions. Field ECa is influenced by multiple 
soil factors including soil salinity, clay content, cation exchange ca-
pacity, clay mineralogy, soil pore size distribution, soil water content 
(θ), and temperature, as well as the depth response function of the sensor 
(Rhoades et al., 1989; Corwin and Lesch, 2005a). Williams and Baker 
(1982) observed that in salt-affected soils, 65 % of the variation in 
measurements could be explained by soluble salt concentration alone. In 
non-saline soils, conductivity variations are primarily a function of soil 
moisture content, texture, and cation exchange capacity (CEC). 
Pedrera-Parrilla et al. (2016) found that the correlation between ECa and 
clay content was twice as high under wet soil conditions as compared to 
dry. 

The multiplicity of factors potentially affecting ECa complicates its 
use as a predictor variable for ECe. Protocols and guidelines for 
geophysical surveys and data analyses have been developed to aid in 
determining ECe (Corwin and Lesch, 2003, 2005b, 2013). Corwin and 
Scudiero (2020) summarized the protocols. Recommendations include 
performing geophysical surveys relatively soon after rainfall or irriga-
tion such that homogeneity of field soil moisture is maximized, and 
using ECa directed soil sampling to develop site-specific ECe regression 
equations requiring a relatively small number of soils samples (Lesch 
et al., 1995; Corwin and Lesch, 2005b). 

The early ECa-directed soil sampling protocols and guidelines 
developed by Corwin and Lesch (2003), (2005b) were devised for nat-
ural precipitation and flood and sprinkler irrigation systems where 
local-scale variation in soil salinity is less complex than micro-irrigation 
systems since water infiltrating at the soil surface is relatively uniform in 
comparison. Subsequently, Corwin and Lesch (2013) developed ECa--
directed soil sampling protocols for fields under drip irrigation, which 
involved taking two separate ECa surveys, one along the drip line and 
one between drip lines to characterize the dramatically different soil 
moisture and salinity regimes that existed in the drip lines and between 
the drip lines. However, as shown by Corwin et al. (2022) these ECa--
directed soil sampling protocols and guidelines were inadequate for 
mapping the complex local-scale 3-dimensional nature of salinity 
resulting from well-established micro-irrigation systems (i.e., drip, 
buried drip, micro sprinklers, etc.) in use for a decade or longer. When 
following the ECa-directed soil sampling protocols of Corwin and Lesch 
(2013) to map field-scale soil salinity for a field under drip irrigation, a 
single soil core is taken at the location of a drip emitter for selected 
locations within the field determined from model- (e.g., response surface 
sample design) or design-based (e.g., stratified random sampling) sam-
ple designs based on the spatial variability of ECa measurements. The 
soil sample is in the “sweet” spot (i.e., the location where the salinity is 
leached the most and is the lowest), which is not representative of the 
1–2 m2 volume of measurement of the electromagnetic conductivity 
meter (i.e., Geonics EM38) used to measure ECa. The induced electro-
magnetic field encompasses the full salinity gradient created by the drip 
emitter, resulting in ECa measurements (i.e., measurement of ECa in the 
horizontal coil configuration, EMh, and in the vertical coil configuration, 
EMv) that are not representative of the salinity in the soil core taken 
directly below the drip emitter. Subsequently, the electrical conductivity 
of the saturation extract (ECe) obtained from the soil core sample is not 
representative, resulting in an erroneous ECa to ECe calibration (Corwin 
et al., 2022). To map soil salinity accurately for fields under drip irri-
gation Corwin et al. (2022) developed a modified set of protocols for 
mature drip-irrigation systems that accounts for the complex local-scale 
variability in salinity around drip lines. An essential part of the ECa--
directed soil sampling protocols for drip irrigation systems involves the 
determination of the location of the EMI measurement and soil core 
location that will provide the best ECa–ECe calibration around the drip 
line. Corwin et al. (2022) recommended the use of transient solute 
transport models such as HYDRUS-2D to establish the location of EMI 
measurements and soil core samples to create the best ECa–ECe cali-
bration, thereby eliminating the need for labor and cost-intensive soil 

cores and their analysis for each crop and set of soil conditions. 
It is the object of this paper to demonstrate and evaluate the use of a 

transient solute transport model to determine the optimal EMI mea-
surement and soil core location from the drip line for calibrating ECa to 
ECe from geospatial EMI measurements for a field under drip irrigation. 
The determination of the optimal EMI measurement and soil core lo-
cations to best calibrate ECa to ECe for various crops and soil conditions 
is a crucial tool to map and monitor the complex local- and field-scale 
variation in soil salinity for drip irrigation systems using ECa-directed 
soil sampling (Corwin et al., 2022). 

2. Methods 

We use HYDRUS-2D simulations to investigate optimal positioning 
for EMI measurements and ground-truth soil cores. The goal is to obtain 
field measurements that identify high EC areas and reduce the uncer-
tainty in field observations. An ensemble of 729 simulations is used to 
account for uncertainty in the input parameters and boundary condi-
tions. The workflow for the ensemble simulation is outlined in Fig. 1 and 
detailed below. As a demonstration, we consider two case studies for 
drip-irrigated orchards, also explained below. 

2.1. Numerical modeling 

Drip irrigation simulations were done using the HYDRUS-2D soft-
ware. HYDRUS-2D uses a Galerkin finite-element method based on the 
mass conservative formulation proposed by Celia et al. (1990). Flow 
individual emitters can be considered axisymmetric until the wetting 
patterns from neighboring emitters begin overlapping. After that, the 
axisymmetric representation can only be an approximation of the fully 
three-dimensional problem (Kandelous et al., 2011). Although drip 
irrigation typically consists of many emitters with overlapping wetted 
soil volumes, in our simulations we considered axisymmetric flow from 
a single emitter assuming negligible overlap. The Richards equation 
governing axisymmetric water flow in homogeneous and isotropic soil 
is: 

∂θ(h)
∂t

=
1
r

∂
∂r

[

r K(h)
∂h
∂r

]

+
∂
∂z

[

K(h)
∂h
∂z

+ K(h)
]

− S(h) (1)  

where θ is the volumetric soil water content (L3L− 3), h is the soil water 
pressure head (L), t is time (T), r is the radial coordinate (L), z is the 
vertical space coordinate (L), K is the hydraulic conductivity (LT− 1), and 

Fig. 1. Flow-chart of the ensemble modeling setup using HYDRUS-2D. Q is 
emitter discharge, LF is irrigation leaching fraction, Ks is soil saturated hy-
draulic conductivity, Rroot is the radius of the root system, Iinter is the irrigation 
interval, B.C. is model boundary conditions, I.C. is model initial conditions, WC 
is soil water content, and ECp ECw are the electrical conductivity of the soil pore 
water and of the irrigation water, respectively. 
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S is the sink term accounting for water uptake by plant roots (L3L− 3T− 1). 
The unsaturated soil hydraulic properties were described using the van 
Genuchten-Mualem functional relationships (Van Genuchten, 1980): 

Se(h) =
θ(h) − θr

θs − θr
=

1
(1 + |α h|n)m (2)  

K(h) = Ks S0.5
e [1 − (1 − S1∕m

e )
m
]
2

(3)  

in which Se is the effective saturation; θr and θs are the residual and 
saturated water contents (L3L− 3), respectively; Ks is the saturated hy-
draulic conductivity (LT− 1); and α (L− 1), m, and n are shape parameters 
with m = 1 − 1∕n. 

Solute transport in a homogeneous, axisymmetric domain was 
computed using the convection-dispersion equations (CDE): 
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(4)  

where C is the total solute concentration (ML− 3); Cs is the concentration 
of the water extracted by roots (ML− 3); qr and qz are the radial and 
vertical volumetric fluid fluxes (LT− 1), respectively; and Drr, Drz, Dzz, 
and Drz (L2T− 1) are dispersion coefficients that were modeled as func-
tions of solute velocities and dispersivities using standard equations 
(Bear, 2013). Longitudinal and transverse dispersivities were set to 0.5 
and 0.1 cm, respectively. Equation 4 neglects chemical reactions and 
interactions with the solid phase. 

We assume relatively low solute concentrations such that the elec-
trical conductivity of a solution is proportional to its total solute con-
centration. The proportionality permits directly replacing units of 
concentration in Eq. 4 with units of electrical conductivity, dS m− 1. The 
solute is taken up passively by roots until a threshold concentration, 
Cs,max, is reached (Šimunek and Hopmans, 2009); we set the threshold to 
1 dS m− 1. The Feddes root water uptake stress parameters (Feddes and 
Zaradny, 1978) were based on values given for orange trees (Grieve 
et al., 2012) in the HYDRUS-2D software, since no data is available for 
Pistachio trees in the literature. 

Except in very coarse-textured soils, water from surface drip emitters 
often travels a short distance overland before infiltrating. Thus, rather 
than a point source, the surface emitter was represented as a 10 cm 
radius source (Fig. 2). The domain size was 300 × 300 cm with free 
drainage at the bottom boundary (Fig. 2). 

2.2. Apparent bulk soil electrical conductivity 

Three main pathways exist for electrical conduction in soils: via soil 
water occupying the larger pores; via cations on exchange surfaces; and 
via solid particles in direct and continuous contact with one another 
(Rhoades et al., 1999). In sufficiently moist soils, the dominant pathway 
is via the soil pore solution. Rhoades et al. (1989) formulated a model for 
the apparent bulk soil electrical conductivity (ECa) that integrates the 
conductivities of the three pathways: 

ECa =

[
(θSS + θWS)

2ECWSECSS

θSSECWS + θWSECS

]

+ (θW − θWS)ECWC (5)  

where θWS and θWC are the volumetric soil water contents in the soil 
water and continuous liquid pathways (cm3 cm− 3), respectively; θSS and 
θSC are the volumetric contents of the surface-conductance and solid 
phases (cm3 cm− 3), respectively; ECWS and ECWC are the conductivities 
of the soil water pathway and continuous liquid pathway (dS m− 1), 
respectively; and ECSS and ECSC are the conductivities of the surface- 
conductance and solid phases (dS m− 1), respectively. 

With knowledge of soil bulk density and assuming uniform clay and 
organic matter contents and the soil not being extremely dry (Corwin 
and Lesch, 2005a), it is possible to express the constituent conductivities 
as functions of soil properties and degree of water saturation, and thus 
relate ECa to θ and the pore water EC (ECp). We assume θ = θWS + θWC 
= total volumetric water content (cm3 cm− 3). The following empirical 
approximations have been evaluated by Corwin and Lesch (2003) and 
Farahani et al. (2005): 

θ =
PW db

100
(6)  

θWS = 0.639 θW + 0.011 (7)  

θSS =
db

2.65
(8)  

ECSS = 0.19 Se − 0.434 (9)  

ECW =

[
ECe db Se

100 θw

]

(10)  

ECSS = − 2.1 + 2.3 CP (11) 

Fig. 2. The 300 × 300 cm axisymmetric domain and finite element mesh used to simulate water flow, solute transport, and root water uptake beneath a sin-
gle emitter. 
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where PW is the gravimetric water percentage, db is the bulk density (Mg 
m− 3), ECW is the average electrical conductivity of the saturated extract 
(dS m− 1), and CP is clay percentage. Fig. 3 shows the θ − ECa − ECp 
relationship for the clay loam soil used in this study (discussed below). 
Fig. 4. 

To simulate EMI measurements, we suppose an EMI sensor is located 
at the surface of the axisymmetric domain a distance r from the emitter. 
Measurements taken in the vertical (EMv) and horizontal (EMh) config-
urations average the simulated bulk soil EC directly beneath the sensor 
down to the 75 and 150 cm depths, respectively. Note that concerning 
the axisymmetric domain, moving the sensor along a path parallel to the 
drip line and moving the sensor on a path perpendicular to an emitter 
are comparable in terms of increasing the distance r from the emitter 
(Fig. 5a). 

2.3. Case studies and model ensemble 

Two case studies were developed featuring either a high or low 
initial soil salinity. Soil parameters and surface boundary conditions 
were based on conditions found in Flores commercial pistachio orchards 
near Lemoore, CA (36.192∘N, 129.881∘W), a highly productive agricul-
tural area in the Central Valley of California that is home to a variety of 
tree crops. Soils in the region often have high salinity due to combina-
tions of some or all of the following: irrigation, poor drainage, high 
water tables, high levels of evapotranspiration, and high levels of 
naturally occurring salts. 

The soil was taken to be homogeneous with characteristics based on 
the soil found in the Flores pistachio orchard. From the SoilGrids data-
base (Hengl et al., 2017, representative soil properties for the clay loam 
soil were determined to be 36 % sand, 37 % silt, 27 % clay, and bulk 
density equal to 1.59 g cm− 3. The Rosetta V3 pedotransfer function 
(Zhang and Schaap, 2017 was used to estimate soil hydraulic parameters 
from the soil properties. The resulting parameters were θr = 0.103; θs =

0.412; α = 0.0071; cm− 1; n = 1.37; and Ks = 0.363 cm h− 1). 
The model runs for the case studies simulated 60 days, with surface 

boundary conditions reminiscent of early season (April-May) pistachio 
irrigation. Crop potential evapotranspiration was calculated based on 
the Penman-Monteith equation (Allen et al., 1998 using hourly meteo-
rological data from CIMIS (California Irrigation Management Informa-
tion System) station no. 80. The crop coefficient (Kc) for April and May 
were 0.25 and 0.75, respectively (based on Goldhamer, 2005). The 
60-day simulation was found to be sufficient for wetting of the entire 
root zone. The simulations ran with uniform initial θ (70 % of field ca-
pacity) and pore water salinity, ECp,init (values used for case studies 
discussed below). Potential crop evapotranspiration (ETc) and water 

requirements per tree assumed one tree per 48 m2 and 8 emitters per 
tree. Applied irrigation water was determined according to ETc + ETc 
× LF, where LF is the target leaching fraction, ETc was calculated ac-
cording to a theoretical perfect forecast from one irrigation to the next, 
and the evaporation fraction was assumed to be 0.15 (based on similar 
evaporation-transpiration partitioning in drip-irrigated tree crops, Kool 
et al., 2014). 

One case study featured an initial low pore water EC (ECp,init =

1 dS m− 1) irrigated with higher ECw, and the other a high ECp,init (= 12 
dS m− 1) and lower ECw irrigation water. To account for uncertainty or 
variability in system parameters, simulation runs were made using 
combinations of three possible values for six selected model parameters, 
giving a total of 36 = 729 combinations and simulations for each case 
(Table 1). The model parameters were selected based on their high 
impact on solute distribution in drip irrigation (Mmolawa and Or, 
2000). The selected parameter values for initial pore water EC (ECp,init), 
irrigation water EC (ECw), emitter discharge (Q), leaching fraction (LF) 
and irrigation interval (Iinter) are within the range of common drip irri-
gation practices that are also applied in Pistachio orchard irrigation in 
our study area (Dasberg and Or, 1999; Burt and Isbell, 2005; 
Mehdi-Tounsi et al., 2017). Pistachio root-zone radius (Rroot) range was 
based on the Pistachio effective root-zone depth that is often considered 
in the study area (Baram et al., 2016; Burt et al., 2003) and soil saturated 
hydraulic conductivity (Ks) range was ± 20% of the calculated value, 
maintaining it in a range typical of a clay loam soil. 

ECa and ECe are presented as normalized values (noted as ẼCa and 
ẼCe, respectively). The normalization is calculated by dividing each 
value of the grid element by the sum in the domain and weighted by the 
element size. The normalization is done to facilitate comparisons be-
tween ensemble members differing in water content and applied solute. 
To estimate the relative importance of each variable in Table 1, a simple 
sensitivity analysis was performed. For each parameter, the coefficient 
of variation (CV) of the final simulated normalized apparent bulk soil EC 
(ẼCa) was calculated for the subset of model runs made while setting 
that the parameter to its middle value (Table 1). Among the calculated 
CVs, a relatively low value obtained for a given parameter would indi-
cate the parameter, when not held fixed, had a relatively high impact on 
the model output variance. 

2.4. Ensemble analysis 

Of interest is the correlation between water content and soil salinity 
to the apparent EC (ECa). If ECe is not correlated to ECa, it will be 
difficult to reliably infer salinity levels from measured ECa values. The 
ECe–ECa and θ–ECa correlations were calculated for 5 cm horizontal 
radius increments, down to 75 cm (EMIv measurement configuration) 
and to 150 cm (EMIh) configuration. A rolling window Pearson corre-
lation coefficient (ρ) was calculated between the vertical means of ECe 
and ECa as well as between θ and ECa. ECe was taken to be the soil water 
EC at saturation. To clarify that correlations do not change significantly 
with time during and between irrigations, the rolling correlation was 
calculated for all ensemble members of both cases and the ensemble 
mean was compared between the last 16 output times of the last 72 h of 
simulation, using an index of agreement (Willmott, 1981) as a stan-
dardized measure of model prediction error (varies between 0 and 1). 

The ECa and ECe values were also calculated based on the mean value 
obtained when EMI measurements traversed parallel to the dripline at a 
distance d, thus averaging a soil area of changing horizontal radii from 
the emitter (Fig. 5). This calculation provides the theoretical ECa values 
measured in the modeled field and compared to the simulated ECe 
values. 

2.5. Field data 

Qualitative comparisons between simulations and field data were 

Fig. 3. Plot of ECa as a function of soil water content (θ) and pore water EC 
(ECp) for the clay loam soil used in this study, according the formulation of 
Rhoades et al. (1989) (Eq. 5). 
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made. Two subsections within the Flores pistachio orchard in Lemoore, 
CA designated D01 and D05 were selected to provide relevant soil data. 
Subsection D01 was 230 × 200 m and D05 was 200 × 200 m. Soil 
sample sites were selected using the ECa-directed soil sampling protocols 
summarized by Corwin and Scudiero (2020) to provide a range of 
variation in soil properties. The details of the ECa survey and soil sam-
pling can be found in the associated paper by Corwin et al. (2022). A 
brief overview of the ECa survey and soil sampling will be provided for 

orientation. 
Geospatial surveys of ECa for D01 and D05 were conducted using a 

mobile cart pulled by hand with electromagnetic induction (EMI) and 
coupled GPS equipment secured to the cart. Ten equally spaced traverses 
(20 m apart) were taken with the electromagnetic conductivity meter 
within each of the Flores (D01 and D05) sites. Along each traverse, ECa 
measurements were taken every 3–5 m. Measurements of ECa were 
taken in the horizontal (EMh) and vertical (EMv) dipole modes to provide 
shallow (0–0.75 m) and deep (0–1.5 m) measurements of ECa, 
respectively. 

Using the ECa survey data, 6 sampling locations were selected at each 
site (i.e., Flores D01 and Flores D05) to represent the frequency distri-
bution of the bivariate EMI survey data for each site, and to be allocated 
across each site to avoid spatial clustering. Soil cores were taken at 6 
locations within both D01 and D05. At each of the 12 locations (6 lo-
cations for D01 and 6 locations for D05) soil cores were taken at 0, 0.3, 
0.6, 0.9, 1.2, and 1.5 m perpendicular to the drip line at 0.3-m depth 
increments down to 1.5 m. The cores taken at 0, 0.3, 0.6, 0.9, 1.2, and 
1.5 m perpendicular to the drip line were used to characterize the 
salinity gradients created by drip irrigation. All soil cores were kept in 
refrigerated storage before air-drying and sieving (2-mm sieve), which 
occurred within a few days after their collection. Soil samples were 
analyzed for electrical conductivity of the saturated paste extract (ECe), 

Fig. 4. Boundary conditions and root distribution generated for the irrigation simulations:(a) Potential crop evapotranspiration (ETc) used as boundary conditions in 
the simulations and (b) spatial root density distribution (β). The generated root-zone was spherical with β decreasing linearly with depth. 

Fig. 5. (a) Overhead view of the EMI measurement path at a distance d from the drip-line and (b) the soil area sensed moving the sensor from a distance r = d to 
r = R in either the vertical (75 cm) or horizontal configuration (150 cm). 

Table 1 
Parameter values used to generate ensembles of 36 

= 729 simulations for the 
high and low ECp,init case studies. ECp,init = initial pore water EC; ECw 
= irrigation water EC; Q = emitter discharge; LF = leaching fraction; Iinter 
= irrigation interval; Rroot = root-zone radius; Ks = soil saturated hydraulic 
conductivity.  

Parameter Low ECp,init High ECp,init 

ECp,init (dS m− 1) 1 12 
ECw (dS m− 1) [3, 5, 8] [1, 3, 5] 
LF (–) [0.05, 0.1, 0.15] 
Q (L h− 1) [3, 4, 5] 
Iinter (h) [48, 72, 96] 
Rroot (cm) [100, 150, 200] 
Ks (cm h− 1) [0.290, 0.363, 0.435]  
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saturation percentage (SP), Sodium adsorption ratio (SAR), gravimetric 
water content at field capacity (θg), and pH of the saturated paste extract 
following the chemical analysis procedures presented by Rhoades 
(1996). SAR was estimated after determining Ca, Mg, and Na concen-
trations in the saturated paste extract. The field ECe and θ measured 
values are qualitatively compared to the model results. 

3. Results and discussion 

3.1. Simulation results and field data 

Example results for one of the simulated soil profiles obtained at the 
end of the 60-day simulation are shown in Fig. 6. The patterns and trends 
shown were roughly the same for all 729 realizations. The water content 
(presented as saturation degree normalized to field capacity, Se∕Se, FC) 
has the same pattern for both case studies (left panels in Figs. 6a and 6b). 
There is some difference in Se between cases at the edge of the wetted 
bulb, at about 150–180 cm from the dripper. The wetter soil in the high 
ECp,init case are caused by relatively less water uptake occurring in areas 
of the root zone with higher salinity (Fig. 6b, right panel). The salinity 
profiles differ between cases (Figs. 6a vs 6b, right panels). The low 
ECp,init case has a higher concentration of salinity close to the dripper, as 
most salts in the profile were added with the irrigation water and 
accumulated in the rootzone. The high ECp,init case has lower ECe close to 
the dripper while the salts being leached by relatively low EC water 
accumulate at the periphery of the wetted bulb. The two case studies 
represent possible scenarios where present irrigation water quality dif-
fers from that used in the past. 

At both sites sampled in the Pistachio orchard, ECe was positively 
correlated with distance from the emitter (Fig. 7). At site D01, the ECe vs. 

distance correlation was R2 = 0.32 when calculated for all transects at 
the site (Fig. 7b). At site Do5, the correlation was R2 = 0.49 (Fig. 7c). 
The measured ECe values have a qualitative resemblance to the high 
ECp,init case results, with a general increasing ECe gradient when moving 
away from the emitter and with a similar range of ECe values presented 
in Fig. 6a. 

The field data and modeled high ECp,init case study represent saline 
soils irrigated with relatively good quality water and thus solute con-
centration gradients are positive moving away from the emitter. 

3.2. Ensemble analysis 

3.2.1. θ-ECa correlation and ECe-ECa correlations 
In the low ECp,init case, θ-ECa and ECe-ECa correlations for simulated 

EMv measurements (150 cm averaging depth) are positively high out to 
a radial distance of 100 cm from the emitter for all three presented 
simulation times, with small variance between ensemble members 
(Fig. 8a,c,e). The EMh results (75 cm averaging depth) show a lower 
(mostly positive) correlation and higher variance over the same radial 
distance. For the high ECp,init case, θ-ECa and ECe-ECa correlations are 
lower (sometimes negative) over the 0–100 cm distance as compared to 
the low ECp,init case. In most of the wetted area (radial distance 
0–120 cm), the θ-ECa correlation for the high ECp,init case is negative for 
EMv, and is low with large ensemble variability for EMh (Fig. 8d,f). This 
is caused by the general positive ECe gradient and a negative θ gradient 
with distance from the emitter (Fig. 6b). 

For both measurement depths at the end of the simulations, there is 
an area of high positive θ-ECa and ECe-ECa correlation at 80–150 cm 
distance in the low ECp,init case (Fig. 8c,e), and at 130–180 cm in the 
high ECp,init case (Fig. 8d,f). This range of distances away from the 

Fig. 6. Example normalized field capacity saturation degree (Se∕Se, FC, left panels) and saturated paste extract electrical conductivity (ECe, right panels) obtained at 
the end of one of the 729 simulations for the (a) low and (b) high ECp,init case studies. In the plots, z is depth and r is distance from emitter. Simulation parameters for 
this example were: Q = 4 L h− 1, LF = 0.1, Ks = 0.363 cm h− 1, Rroot = 150 cm, Iinter = 72 h, and ECw = 5 dS m− 1 for the low case (a) and ECw = 3 dS m− 1 for the 
high (b). 
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dripper can be considered a reliable distance for ECa measurements 
since ECe-ECa are highly correlated with a small variability between 
ensemble members (Fig. 8b,c,d,e). The ECe-ECa correlation was gener-
ally greater (more positive) and more reliable (smaller variance) for the 
150 cm measurement depth than for the 75 cm depth. 

The index of agreement of mean correlations of θ-ECa and ECe-ECa in 
the last 72 h of simulations (16 in total) was higher than 0.96 by average 
for all cases and depths. The high agreement indicates the correlations 
presented in Fig. 8 do not change drastically in the later stages of the 
simulations. 

3.2.2. Calculated ensemble ECa and sensitivity analysis 
To further understand θ and ECe dynamics and their potential effect 

on ECa measurements with an EMI device, it is important to consider the 
entire ECa soil profile. The mean and CV of the calculated ẼCa (Eq. 5) of 
the ensemble members were computed at the end of the simulations 
(Fig. 9). The low ECp,init case has the higher averaged ẼCa very close to 
the emitter where both moisture and solute concentrations are high 
(Fig. 9a). For the high ECp,init case, the displaced salts are concentrated 
towards the edges of the wet area and increase the ẼCa at that area 
despite it being drier (as shown for one ensemble member in Fig. 6). For 
the high ECp,init case, proximal measurement far from the wetted bulb 

may be misleading since there is a high ẼCa, but high salinity in those 
areas might not have influence on the root-zone and thus the tree health 
and production (Fig. 9b). 

For both cases there is higher ensemble variability in ẼCa toward the 
edges of the wet bulb (Fig. 9) but the low ECp,init case has a low vari-
ability close to the emitter and the high ECp,init case has a also high 
variability close to the emitter. Thus, for the low ECp,init case, the higher 
relative concentration of soil ECa is close to the dripper with low vari-
ability, making it the ideal area for measurements, but for the high 
ECp,init case the area of high ẼCa is also characterized by high ensemble 
variability implying the ẼCa in this area will differ depending on irri-
gation management (Fig. 9). 

The sensitivity analysis that measured the ensemble CV of ẼCa when 
each parameter is held fixed shows the largest contribution to ensemble 
variance was by ECw for both case studies (Fig. 10). The Iinter parameter 
was the second largest contributor to ensemble uncertainty in both case 
studies. The contribution of all other parameters was similar. For this 
case study knowledge of irrigation water salinity level may be of high 
benefit in assessing optimal locations for proximal salinity sensing. 
Other case studies, with different ranges of parameters, may give 
different results since any sensitivity analysis is largely dependent on the 
parameter range. Prior knowledge of this range of possible values can 

Fig. 7. The location of two Pistachio sites and each soil sampling transect (a), The Saturated paste extract electrical conductivity (ECe) for each transect with 
correlation to distance from the emitter at each site (b-c) and gravimetric water content (θg) for both sites (d). The linear fit of ECe vs. absolute distance from the 
emitter is plotted for each transect and also the overall fit and correlation (R2) calculated for all transects in each site (dashed black lines). 

T. Bughici et al.                                                                                                                                                                                                                                 



Agricultural Water Management 272 (2022) 107813

8

help reduce uncertainty when applying this modeling framework to 
other case studies. 

3.2.3. ECa with distance from the drip-line 
When calculating ẼCa and ẼCe along a parallel path at a distance 

d from the drip-line, average values decrease with increasing d, and then 
remain low and close to constant after 120 cm for the low ECp,init case 
(Fig. 11a). For the high ECp,init case, ẼCa and ẼCe increase with d when d 
< 100 cm, decrease with d between 100 cm < d < 150 cm, and remain 
almost constant with d > 150 cm (Fig. 11b). Thus, for observing salt 
accumulation in the field, a measurement as close as possible to dripline 
will capture the largest portion of ECa and ECe for the low ECp,init case, 
and a measurement at d ~ 100 cm will be optimal for the high ECp,init 

case. The high ECp,init case for ẼCa down to the 75 cm depth has a large 
variability for small d values indicating that some of the ensemble 
members may have the highest ẼCa in that area. This is also suggested by 
the low correlation and high variability of ECa at a 75 cm depth shown in 
Fig. 8,d,f. 

Other case studies can result in different results and present a 
different optimal location for measurements. Moreover, more consid-
erations may be involved in choosing the optimal d, such as the desire to 
measure in an active root-zone area where the measured salinity is 
affecting the tree, or the desire to measure in an area that represents 
mean values rather than the highest salinity values. 

4. Conclusions 

Electromagnetic induction (EMI) measurements of soil electrical 
conductivity (ECa) are routinely used to map and monitor soil salinity 
(ECe). However, in drip-irrigated fields, EMI measurements are affected 
by the positioning of the instrument relative to drip emitters, potentially 
limiting their utility in determining ECe. In this work, simulation was 
used to investigate optimal EMI measurement practices for drip irrigated 
systems. An ensemble modeling approach accounted for unknown or 
uncertain model parameters and inputs. Two case studies were devel-
oped, one with high initial soil salinity and low salinity irrigation water, 
and one with low initial soil salinity and high salinity irrigation water. 

The ensemble simulations identified measurement positions where 
the correlation between ECa and ECe was high, as needed to reliably 
predict ECe from ECa. Analyses of the case studies found that reliable 
salinity monitoring was possible using proximal electrical conductivity 
measurements taken 80–150 cm from the emitter in the low initial soil 
salinity case, and 130–180 cm for the high initial soil salinity case. For 
the low initial salinity case, a measurement adjacent to the emitter was 
also reliable for detecting profile salinity down to a depth of 150 cm. 
Overall, the optimal measurement position for determining ECa and ECe 
was found to be directly adjacent to the emitter in the low initial soil 
salinity case, and 100 cm from the emitter in the high initial salinity 
case. 

Many management, soil, and crop parameters are unknown. Among 
parameters considered uncertain in this study, irrigation water salinity 
and irrigation frequency had the largest effect on model ensemble 

Fig. 8. Rolling Pearson correlation between 
soil volumetric water content and apparent 
electrical conductivity (θ–ECa) and between 
saturated paste extract electrical conductivity 
and apparent electrical conductivity (ECe-
–(ECa)) after 30, 57, and 60 days of simulation 
(a-b, c-d, e-f, respectively). The depths over 
which θ and ECe have been averaged corre-
spond to horizontal (EMh, 0–75 cm) and verti-
cal (EMv, 0–150 cm) configurations of the EMI 
instrument. Lines indicate the mean ensemble 
value and shaded regions show plus-or-minus 
two ensemble standard deviations. Both case 
studies are presented, initial low soil water EC 
irrigated with high EC water (Low ECp,init, 
panels a,c,e) and Initial high soil water EC 
irrigated with low EC water (High ECp,init, 
panels b,d,f).   
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variance. Thus, irrigation water quality and irrigation frequency were 
key factors in predicting soil solute distributions and in assessing 
optimal ECa measurement locations. 

The results obtained here are specific to the two considered case 
studies. At present, determining optimal measurement positioning for 
other irrigation scenarios would require applying the ensemble 
approach using parameters and inputs specific to each scenario. To 
simplify that process, future work aimed at identifying the most 
important parameters to include as part of the ensemble uncertainty 
analysis is needed. Additional parameters to consider could include the 
unsaturated soil hydraulic parameters. Through analyses of a wide range 
of additional scenarios, it may become possible to identify general rec-
ommendations for EMI-based measurements which could be applied 
when site-specific simulation analyses are not possible. 
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Fig. 9. Mean of normalized apparent EC (ẼCa) and the coefficient of variation (CV) of the normalized apparent EC (ẼCa) of the model ensemble at the end of the 
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Fig. 10. Domain nodal mean of the apparent EC (ECa) coefficient of variation 
(CV) of the ensemble, when each parameter is held fixed at its mid-value. LF is 
the irrigation leaching fraction, Rroot is the root volume radius, Q is the emitter 
discharge, ECw is the irrigation water electrical conductivity and Ks is the 
saturated hydraulic conductivity. 

Fig. 11. The mean of the normalized ECe (ẼCe) and normalized ECa (ẼCa) with 
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illustrated on Fig. 5). Shaded regions show plus-or-minus two ensemble stan-
dard deviations. 
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