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A B S T R A C T

Although the eddy covariance (EC) technique provides direct and continuous measurements of evapo-
transpiration (ET), separate measurement of evaporation (E) and transpiration (T) at the ecosystem level is not
possible. For partitioning ET into E and T, high frequency (10 Hz) time series EC observations collected from Apr
2016 to May 2018 over a rainfed alfalfa (Medicago sativa L.) field in central Oklahoma, USA were analyzed using
the open source software Fluxpart. Fluxpart partitions ET by examining the correlation (Rqc) between water
vapor (q) and carbon dioxide (c) fluxes as prescribed by the Flux Variance Similarity (FVS) partitioning method.
Patterns of Rqc and partitioned E and T were consistent with expected trends associated with vegetation dy-
namics and short-term transient features (i.e., hay harvesting and rainfall events). The Rqc grew stronger with
increasing alfalfa leaf area and exhibited a strong anti-correlation (Rqc close to -1) during peak growth when T
and photosynthesis (P) were dominant and co-regulated by the leaf stomata. Consequently, a strong linear
relationship (R2 = 0.96) was found between monthly midday average values of Rqc and monthly average
Moderate Resolution Imaging Spectroradiometer (MODIS)-derived leaf area index (LAIMOD). Decorrelation of q
and c or dominance of non-photosynthetic (e.g., E and respiration, R) fluxes resulted in less negative or positive
Rqc values during winter, hay harvest, rainy, and nighttime periods. Growing season (Apr-Oct) average T:ET was
approximately 0.82 and 0.77 in 2016 and 2017, respectively. Diurnal cycles and temporal variations of leaf-level
water use efficiency (WUE, an input of the FVS method) estimates were consistent with the seasonal dynamics of
ecosystem WUE, computed from EC-derived gross primary production (GPP) and EC-measured ET. These results
validate the performance of the FVS ET partitioning method using high frequency EC data.

1. Introduction

Quantifying evapotranspiration (ET) is fundamental for a better
understanding of agro-ecosystems and allocation of scare water re-
sources since ET is a key component of the hydrological cycle that ac-
counts for up to 95% of the water budget in dry agriculture
(Wilcox et al., 2003). In recent years, the eddy covariance (EC) method
has been widely used to measure high frequency (i.e., 10 Hz or higher)
observations of the exchange of carbon dioxide (c) and water vapor (q)
fluxes simultaneously at the landscape level (Baldocchi, 2014). Al-
though EC can provide direct and continuous measurements of ET, it
cannot provide separate measurements of the two components of ET:
evaporation (E, nonproductive water use) and transpiration (T, pro-
ductive water use enhancing plant productivity). It is difficult to de-
termine individual components E and T at the landscape level through

measurement (Burt et al., 2005; Wang et al., 2016; Williams et al.,
2004). The partitioning of ET has important implications not only for
the water budget but also for a mechanistic understanding of biological
and climatic controls of E and T (Ferretti et al., 2003; Wang et al., 2015)
since these two components are controlled by different processes and
respond differently to climatic factors (Kool et al., 2014). Thus, the
partitioning of ET into E and T is crucial to minimize the nonproductive
loss of water and to improve water management practices and pro-
ductivity of agroecosystems. Partitioning can also offer greater insights
into the function of agroecosystems by reducing uncertainties in the
interpretation of the coupling between water and carbon/nutrient cy-
cles (Austin et al., 2004). In addition, partitioning is useful for im-
proving the performance of land surface models as they are poorly
constrained due to a lack of observations of the diurnal and seasonal
variations of ET partitioning (Lawrence et al., 2007). However, the
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partitioning of ET into E and T is still theoretically and technically
challenging.

The exchanges of q and c are tightly coupled ecosystem processes
(Morales et al., 2005). Direct measurements of carbon gain and water
loss by EC allow us to quantify water use efficiency (WUE) at the
ecosystem level (Law et al., 2002; Wagle and Kakani, 2014a), which
reflects the trade-off between water loss and carbon uptake in carbon
assimilation process. However, direct measurement of WUE solely
based on T (i.e., productive water use) is not possible by EC due to the
lack of separate measurements of E and T.

There are various methods to partition ET into E and T (Kool et al.,
2014; Sutanto et al., 2014). The ET partitioning methods range from the
conventional technique of integrating hydrometric T measurements
(i.e., sap flow) with E measurements (i.e., weighing lysimeter)
(Herbst et al., 1996; Kelliher et al., 1992) to more recent techniques
based on analyzing the isotopic composition of liquid water and water
vapor (Sutanto et al., 2012; Yepez et al., 2005), and to modeling ap-
proaches such as global land surface models (Miralles et al., 2011), the
HYDRUS-1D model (Simunek et al., 2005), and two source surface
energy balance (SEB) models (Norman et al., 1995). However, all these
methods have limitations due to experimental difficulties or un-
certainties or issues of spatial and temporal coverages in the measure-
ment of E and T.

The Flux Variance Similarity (FVS) ET partitioning method had
been proposed nearly a decade ago to partition E and T using high
frequency EC data (Scanlon and Kustas, 2010, 2012; Scanlon and
Sahu, 2008). A few recent studies have employed the FVS partitioning
method to compare with other partitioning approaches
(Klosterhalfen et al., 2019a; Palatella et al., 2014; Peddinti and
Kambhammettu, 2019; Perez‐Priego et al., 2018; Sulman et al., 2016).
Some studies evaluated the performance of the FVS partitioning method
for different land cover types: a suburban grass field (Wang et al.,
2016), citrus orchards (Peddinti and Kambhammettu, 2019), a Medi-
terranean cropping system (Rana et al., 2018), and across gradients of
woody plant cover (Wang et al., 2010). A few studies have performed
sensitivity analysis of partitioning results using various estimates of
leaf-level WUE (Klosterhalfen et al., 2019b; Sulman et al., 2016). Al-
though EC measurements are available across the world through several
EC networks (e.g., FLUXNET, AmeriFlux, EUROFLUX, AsiaFlux, Chi-
naFlux), wider testing and validation of the FVS partitioning method is
still scarce, most likely due to the computational complexity of ana-
lyzing high frequency EC data. To permit wider practical applicability,
the open source software Fluxpart has recently been developed to im-
plement the FVS partitioning method (Skaggs et al., 2018). Details on
the FVS flux partitioning method are available in the above-mentioned
studies.

This study employed Fluxpart to partition and quantify the dy-
namics of E and T by examining q-c correlations (Rqc), and to char-
acterize the biological and physical processes controlling the temporal
dynamics of E, T, and Rqc over an alfalfa field (Medicago sativa L.). The
alfalfa field was harvested periodically (4–5 times per year) and the
study period consisted of two contrasting years: dry year 2016 (~32%
less rainfall compared to the 30-year, 1981–2010, mean of 925 mm)
and wet year 2017 (~20% more rainfall compared to the 30-year
mean). Thus, this study can serve as a suitable case study for testing FVS
ET partitioning method using the q-c correlation from high frequency
(10 Hz) EC data.

2. Materials and methods

2.1. EC data description and processing

Using an EC system, high frequency (10 Hz) observations of ex-
change of c and q between a 48 ha Alfalfa field (cv. Cimarron 400
planted in Fall 2012) and the atmosphere were recorded from Apr 2016
to May 2018 at the United States Department of Agriculture-

Agricultural Research Service, Grazinglands Research Laboratory, El
Reno, Oklahoma, USA. The EC system, mounted at a height of 2.5 m
above the ground surface, comprised of an open path infrared gas
analyzer (LI-7500 RS, LI-COR Inc., NE, USA) and a 3-D CSAT3 sonic
anemometer (Campbell Scientific Inc., UT, USA). The fetch length for
the EC system was >200 m in each direction. Additional supporting
meteorological measurements at the site included air temperature (Ta),
relative humidity, photosynthetic photon flux density (PPFD), and net
radiation (Rn). Near surface soil moisture (SM), soil temperature (Ts),
and soil heat (G) fluxes were also collected. Rainfall data were collected
from a nearby Oklahoma Mesonet (El Reno) station (http://mesonet.
org/, accessed April 19, 2019). The alfalfa field was harvested four
times in 2016 (cumulative forage yield of ~7.5 dry t ha−1) and five
times in 2017 (cumulative forage yield of ~10 dry t ha−1) for hay.

Raw EC data were processed using the EddyPro software (version
6.2.0 - LI-COR Inc., Nebraska, USA) to compute 30-min ET values.
Processed ET data were screened for bad quality flag 2, implausible
values, and statistical outliers (beyond± 3.5 standard deviation) based
on a 14-day running window (Wagle et al., 2019a; Wagle and
Kakani, 2014b). To retain pulses during certain times of the year (e.g.,
rain events), four or more consecutive reliable ET values beyond± 3.5
standard deviation on a day were not considered outliers. Gaps in eddy
fluxes and meteorological data were filled using the REddyProc package
(https://www.bgc-jena.mpg.de/bgi/index.php/Services/
REddyProcWebRPackage) from the Max Planck Institute for Bio-
geochemistry, Germany (Wutzler et al., 2018). Details on in-
strumentation and data processing for this site are explained in previous
papers (Wagle et al., 2019a, 2019b).

2.2. Satellite remote sensing data

The 8-day composite values of the Moderate Resolution Imaging
Spectroradiometer (MODIS)-derived leaf area index (LAIMOD) for one
pixel (~500 m × 500 m) containing the EC system were obtained from
the Oak Ridge National Laboratory's Distributed Active Archive Center
(ORNL DAAC, 2017). The LAIMOD was binned into seven classes of in-
creasing LAI as <0.5, 0.5–1, 1–1.5, 1.5–2, 2–2.5, 2.5–3, and >3 to
examine the effect of LAI on q-c correlations.

2.3. Partitioning of ET into E and T using Fluxpart

To partition ET into E and T, the FVS flux partitioning method was
performed on the 10 Hz frequency time series EC data from Apr 2016 to
May 2018 using Fluxpart version 0.2.4 (Skaggs et al., 2018). Fluxpart
applies basic QA/QC to high-frequency EC data and corrects high fre-
quency data for external fluctuations associated with Ta and vapor
density effects (Detto and Katul, 2007; Webb et al., 1980). A discrete
wavelet decomposition is used in Fluxpart to progressively remove low
frequency components from the high frequency data if partitioning
results are not successful initially (Klosterhalfen et al., 2019b;
Skaggs et al., 2018). For simplicity, a recent study applied a moving
mean filter to the Reynolds decomposition of high-frequency time series
(Scanlon et al., 2019). The FVS method requires leaf-level WUE as an
input and assumes constant over a given data interval. In the absence of
direct measurements of WUE, the default method used by Fluxpart to
estimate WUE is:

=

−

−

WUE c c
q q

0.625 a i

a i

where ca and ci are the ambient and intercellular carbon dioxide con-
centrations, and qa and qi are the ambient and intercellular water vapor
concentrations, respectively. The ratio of molecular diffusivities for q
and c is 0.625 (Massman, 1998). The ambient c and q concentrations
were derived from EC tower measurements by extrapolating a loga-
rithmic mean profile with stability corrections to the zero-plane dis-
placement height (Scanlon and Kustas, 2010). The intercellular q
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concentration equates to 100% relative humidity for a given leaf tem-
perature where the leaf temperature is assumed to be equal to the
above-canopy Ta (Skaggs et al., 2018). However, vapor pressure inside
leaves may not remain saturated under all conditions (Cernusak et al.,
2018). In Fluxpart, the intercellular c concentration can be a constant
ppm value or ci:ca can be a function of the atmospheric vapor pressure
deficit (VPD) (Katul et al., 2009; Morison and Gifford, 1983). If the
parameter values are not provided as inputs then default parameter
values are provided for C3 and C4 plants in all cases. We used the
Fluxpart 0.2.4 default parameterization for C3 plants which specifies
that ci:ca is a constant value equal to 0.7. Cumulative values of parti-
tioned fluxes were computed using interpolated values for the periods
when the FVS partitioning method did not produce outputs. The source
code of Fluxpart are accessible at https://github.com/usda-ars-ussl/
fluxpart (accessed April 19, 2019).

2.4. Environmental impacts on temporal dynamics of Rqc

We examined the impacts on Rqc of four major environmental
variables (PPFD, VPD, Ta, and SM) which can affect stomatal processes.
Analyses were done using 30 min values during a selected peak growth
period (Apr 15–28, 2017).

3. Results and discussion

3.1. Patterns of ET, E, and T

The 2017 growing season was wetter than the 2016 growing season
(Fig. 1). The site received total rainfall of 501 mm and 930 mm during
the 2016 and 2017 growing seasons (Apr-Oct), respectively. Thus, cu-
mulative forage yield of alfalfa was also higher in 2017 (~10 dry t
ha−1) than in 2016 (~7.5 dry t ha−1) (Wagle et al., 2019b). Total rain
for Jan-Apr 2018 was only 101 mm (~0.6 times less than the 30-year
mean of ~250 mm). As a result, ET values were higher during the 2017
growing season than during the drier 2016 growing season and spring
2018 (Fig. 1). As T is controlled by physiological control of leaf sto-
mata, it is tightly coupled with plant tissue properties (Matheny et al.,
2014; Sperry and Love, 2015). In addition, it responds to environmental
drivers such as dry and wet conditions. In comparison, E is not directly
linked to biological processes, but it responds to environmental drivers
such as dry and wet conditions. Consequently, similar to ET, E and T
values were also higher during the 2017 growing season than during
the 2016 growing season and spring 2018 (Fig. 2).

There was >100 mm rain on Apr 29, 2017. Effects of rainfall and
hay harvesting on surface energy fluxes (e.g., ET and NEE) were com-
pared for rainy (Apr 29), pre-harvest (May 1), and post-harvest (May 4)

days (Fig. 3a). The increased soil water availability after rainfall had a
substantial effect on ET on May 4, 2017 even after hay harvesting.
Comparison of ET between May 1 and 4 could not indicate that the field
was harvested for hay before May 4. Rates of ET were only slightly
higher on May 1 (pre-harvest) than May 4 (post-harvest), but the har-
vesting of hay was clearly reflected by NEE. The alfalfa field was a
carbon source (positive NEE) for the entire day on May 4, but a carbon
sink (negative NEE) on May 1. The magnitudes of both ET and NEE
were smaller on the rainy day (Apr 29). When rates of NEE and ET were
compared between pre-harvest and post-harvest dates during a dry
period (Fig. 3b), the magnitudes of ET and NEE were substantially
higher on Jun 6, 2017 (pre-harvest) than on Jun 8, 2017 (post-harvest).
A large difference in NEE but similar ET between pre-harvest (May 1)
and post-harvest (May 4) periods indicates the dominance of the E
component after a big rainfall event. This result was further supported
by the partitioning of E and T on those days (Fig. 4). The magnitude of T
at pre-harvest (~0.25 mm 30 min−1) was almost double than that at
post-harvest (~0.12 mm 30 min−1).

3.2. Proportions of E and T to ET

The proportions of T or E to ET at around midday (average ratios
from 11:00 am to 2:00 pm local time) for the 2016 and 2017 growing
seasons are shown in Fig. 5. During the growing season, T dominated
with T:ET approaching 1. An abrupt change in T:ET occurred im-
mediately after rains or harvesting of hay with E increasing at the ex-
pense of T. The E:ET ratio was ~0.2 or less if hay harvesting and rainy
periods were excluded. The fraction of E reached ~50% of total ET
during hay harvesting or rainy periods.

Diurnal patterns of E and T were determined during peak growth
(May 25–28) with no rainy days in 2017 (Fig. 6). The T peaked
(~0.3 mm 30 min−1) at ~2:00 pm, around the time radiation peaked,
but E peaked (~0.15 mm 30 min−1) before noon. If diurnal mean va-
lues were summed then daily ET was 6.16 mm, daily T was 4.55 mm,
and daily E was 1.61 mm. When cumulative ET, T, and E were com-
puted for this period (May 25–28, 2017), using interpolated partitioned
fluxes, they were 24.3, 18.5, and 5.8 mm, respectively. The results in-
dicated that nearly 25% of total ET was lost as E during peak growth.
When T:ET was compared for selected pre-harvest (May 1–15), post-
harvest/regrowth (May 19–25, 2016), and winter (Dec 16–30, 2016)
periods, T accounted for 81%, 76%, and 70%, respectively, of the total
ET (data not shown). The results illustrated the differences in diurnal
cycles and temporal variations of ET partitioning. Such understanding
of the diurnal cycles and temporal variations of ET partitioning can help
to improve the performance of land surface models for water budgets,
weather prediction, and climate studies (Betts et al., 1996;
Lawrence et al., 2007).

Fig. 7 shows that the T:ET ratio was nearly 0.80 or higher in each
month of the 2016 growing season (Apr-Oct). The T:ET ratio reached
0.83–0.85 during relatively hotter and drier Jun and Jul 2016. Simi-
larly, T:ET was ~0.70 in May, Aug, and Oct 2017, while it reached
0.85–0.86 during relatively hotter and drier Jun and Jul 2017. Sum-
mers are generally warmer and drier in the region with a bimodal
rainfall pattern (rain during spring and fall, with hot and dry summers).
Even in a wet year 2017, near-surface (~5 cm depth) monthly average
SM was approximately 0.12 and 0.08 m3 m − 3 in Jun and Jul, re-
spectively, as compared to the monthly average SM of ~0.20 m3 m − 3

in both May and Aug. However, deep rooted perennial alfalfa stands
can extract SM from deeper depths during dry summer periods. Re-
duced E from relatively drier top soil in summer can be attributed to
relatively higher T:ET ratios during the Jun-Jul period in both years.
The growing season average T:ET was approximately 0.82 in 2016 and
0.77 in 2017. Slightly smaller T:ET for the 2017 growing season can be
attributed to more E at the expense of T due to more seasonal rainfall
and greater availability of SM. Average near surface SM for the May-Oct
period was approximately 0.10 and 0.15 m3 m − 3 in 2016 and 2017,Fig. 1. Dynamics of daily evapotranspiration (ET) and rain for the study period.
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Fig. 2. Dynamics of evapotranspiration (ET) and partitioned fluxes (evaporation, E and transpiration, T) for the study period.

Fig. 3. Daytime (7:00 am - 7:00 pm local time) patterns of evapotranspiration (ET) and net ecosystem CO2 exchange (NEE) for the selected days in 2017. The alfalfa
field was harvested for hay on May 3 and Jun 7, 2017. Negative NEE indicates gain of carbon by the alfalfa field. Bars represent standard errors of the mean.
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respectively. Transpiration of roughly 80% of seasonal ET in this study
was on par with that reported for forests (Wang et al., 2014). They
reported a range of 38–77% T of total ET based on synthesis of the
available data from global-scale field measurements.

3.3. Diurnal variations of q-c correlation (Rqc) and leaf-level water use
efficiency (WUE)

Mean diurnal cycles of Rqc and WUE were compared for the three
selected periods: pre-harvest, post-harvest, and winter (Fig. 8a, b).
Maximum anti-correlation (Rqc approaching −1) generally occurred at
around local noon time when vegetation was the largest sink of c and
the largest source of q. Decorrelation of q and c or dominance of non-
photosynthetic fluxes of c and q (i.e., R and E) resulted in positive Rqc

values during the evening, night, and early morning. As a result, Rqc

showed a concave shape in diurnal cycle during all selected time per-
iods. Peak values of Rqc were close to −1 (minimum of −0.94) for
several hours (from 10:00 am to 4:00 pm local time) during May 1–15,
2016 (pre-harvest). In comparison, Rqc values reached a minimum of
−0.55 and −0.58 at around noon during May 19–25, 2016 (post-
harvest) and December 16–30, 2016 (winter), respectively. In addition,
the diurnal correlation curve decayed quickly from midday. As a result,

Fig. 4. Daytime (7:00 am - 7:00 pm local time) patterns of partitioned fluxes
(transpiration and evaporation) for the selected pre-harvest (May 1) and post-
harvest (May 4) days. The alfalfa field was harvested for hay on May 3.

Fig. 5. Dynamics of the ratio of transpiration (T) or evaporation (E) to eva-
potranspiration (ET) during midday (averaged from 11:00 am to 2:00 pm local
time) for the 2016 and 2017 alfalfa growing seasons. Few major rain and
harvest events are marked.

Fig. 6. Diurnal patterns of partitioned fluxes (evaporation, E and transpiration,
T) for a selected period during a peak growth of alfalfa. Bars represent standard
errors of the mean.

Fig. 7. Proportion of transpiration (T) to evapotranspiration (ET) for each
month of the 2016 and 2017 growing seasons. Bars represent standard errors of
the mean.
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Rqc peaked only for a shorter period around noon during post-harvest
and winter periods as compared to the pre-harvest period (Fig. 8a),
illustrating that diurnal patterns of Rqc vary seasonally (Wang et al.,
2016). Temporal changes in the dominant flux component (P vs. re-
spiration (R) and T vs. E) due to changes in vegetation activity mod-
ulate Rqc and cause diurnal and seasonal trends of Rqc.

The diurnal pattern of Rqc followed the diurnal pattern of PPFD
(Fig. 9a). The Rqc values were −0.5 or more negative when PPFD
>400 μmol m − 2 s − 1. The scatter plot also showed an abrupt tran-
sition in Rqc between 400–500 μmol m − 2 s − 1, with Rqc transitioning
towards −1 at higher PPFD (Fig. 9b). Wang et al. (2016) also reported
a similar abrupt transition in Rqc for incoming solar radiation >200 W
m − 2 (equivalent to PPFD >400 μmol m − 2 s − 1) at a suburban grass
field in Princeton, New Jersey, USA. A strong linear relationship
(R2 = 0.78, Fig. 9c) between PPFD and T illustrated the dominance of T
at higher PPFD. Dominant roles of T for q and P for c result in strong
anti-correlations (Rqc close to −1) between q and c (Scanlon and
Sahu, 2008; Williams et al., 2007). We did not find any trends for Rqc-Ta

and Rqc-SM relationships, but Rqc quickly transitioned towards −1 with
increasing VPD beyond 10 Pa (Fig. 9d). These results were consistent
with the findings of Wang et al. (2016) that decorrelation between q
and c at low VPD (humidity near saturation) can be caused by a sharp
reduction in T but continuity of P.

Mean diurnal cycles of estimated WUE at the leaf-level by Eq. (1)
followed similar patterns for the three selected periods: pre-harvest,
post-harvest, and winter (Fig. 8b). During all periods, WUE was the
highest (negative sign convention) in the early morning, decreased
sharply with increasing solar radiation after sunrise, remained lower
and stable level from noon to afternoon due to higher radiation and
VPD, and increased again in the evening after radiation and VPD de-
creased. As a result, WUE showed negative relationships with radiation
and VPD when multiple regression analysis was performed using half-

hourly EC data (Wagle and Kakani, 2014a).
Large variability in diurnal cycles of leaf-level WUE for the three

selected periods (Fig. 8b) indicated how the WUE pattern varied sea-
sonally. Post-harvest period had the lowest and winter period had the
highest WUE. Substantial amount of water can be lost as E but the
carbon assimilation is low after harvesting of hay. Higher WUE in
winter can be due to the fact that a perennial alfalfa stand can acquire
substantial amounts of carbon in winter when ET demand is low. The
magnitude of WUE was intermediate during peak growth due to a more
rapid increase in water use than in carbon gain.

If direct measurements of WUE are not available, Fluxpart can es-
timate leaf-level WUE from atmospheric CO2 and H2O data, the pho-
tosynthetic pathway of the vegetation (C3 or C4), and the heights of the
canopy and the EC system (Skaggs et al., 2018). Due to a lack of direct
measurements, WUE was estimated in this manner for this study. The
diurnal and temporal patterns of estimated WUE followed the expected
trends as well as the seasonal dynamics of ecosystem level WUE (de-
rived from EC-derived gross primary production (GPP) and EC-mea-
sured ET, Fig. 8c). The magnitudes of weekly ecosystem level WUE
were >3.5 g C mm−1 ET during spring and winter but decreased to
~1.5 g C mm−1 ET or less during summer.

3.4. Seasonal variations of q-c correlation (Rqc)

Daily average values of Rqc around midday (11:00 am – 2:00 pm

Fig. 8. Hourly binned diurnal courses of the correlation (Rqc) between carbon
and water fluxes (a), and leaf-level water use efficiency (WUE, b) for the three
selected periods, and seasonal dynamics of daily (weekly average) ecosystem
WUE (c), computed as the ratio of sums of eddy covariance (EC)-derived gross
primary production (GPP) to EC-measured evapotranspiration (ET) for the 2016
alfalfa growing season. Bars represent standard errors of the mean.

Fig. 9. Half-hourly binned diurnal courses (a) of the correlation between
carbon and water fluxes (Rqc) and photosynthetic photon flux density (PPFD),
and relationships of PPFD with Rqc (b) and transpiration (T, c), and relationship
of vapor pressure deficit (VPD) with Rqc (d) for a selected period (Apr 15–28,
2017) during peak growth of alfalfa. Bars represent standard errors of the mean.
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local time), and daily NEE and ET during Feb-Nov 2017 are shown in
Fig. 10. Daily NEE values were close to zero or positive and ET values
were ~0.5 mm at the beginning and end of the growing season. Both
NEE (negative is gain of carbon) and ET began to increase with growth
of alfalfa vegetation. The Rqc transitioned towards −1 as the alfalfa
field became a net sink of carbon. The Rqc values were close to −1
when NEE and ET peaked during peak growth. There was decorrelation
or poor correlation between q and c during harvesting and rainy per-
iods, due to an increase in fraction of direct E at the expense of the
fractional contribution from T. Rain events and harvests had similar
impacts on Rqc, NEE, and ET: ET decreased, NEE transitioned towards
positive (source of carbon), and Rqc transitioned towards less negative
or even positive. We did not observe a direct relationship of daily solar
radiation, SM, or Ta with midday average Rqc (data not shown), similar
to the findings of Wang et al. (2016).

3.5. Seasonality of Rqc with alfalfa vegetation growth

Monthly averaged midday (11:00 am – 2:00 pm local time) Rqc

values and monthly averaged LAIMOD for the study period are presented
in Fig. 11 to show the seasonal variations of Rqc and alfalfa vegetation
growth. The strongest q-c anti-correlation (Rqc towards −1) occurred
during peak growth (Mar-Apr, as shown by the largest values of
LAIMOD) when T and P were dominant and co-regulated by the leaf
stomata. The results also indicated that both q and c were jointly car-
ried by turbulent structures. The field was not harvested for hay until
May each year. Relatively smaller q-c anti-correlation and LAIMOD va-
lues during summer can be attributed to monthly harvesting of hay
from May to Jul each year as well as lower rainfall and drier top soils
during the summer. Both q-c anti-correlation and LAIMOD values were
higher again in the fall due to more rainfall and no frequent harvest of
hay. Due to close correspondence between vegetation growth and Rqc, a
strong linear relationship (R2 = 0.96) was observed between Rqc and
LAIMOD (Fig. 11c). The Rqc transitioned towards−1 as LAIMOD of alfalfa
increased. The result indicated that a one unit increase or decrease in
LAIMOD would increase or decrease Rqc by 0.11. Because of such

changes in Rqc due to changes in vegetation cover, several studies have
reported a strong control of vegetation on ET partitioning (Good et al.,
2014; Schlesinger and Jasechko, 2014; Wang et al., 2010). A strong
correspondence between Rqc and LAIMOD in this study also indicated the
potential of determining the seasonality of Rqc in alfalfa using remotely-
sensed vegetative metrics.

4. Conclusions

The correlation between water vapor (q) and carbon dioxide (c)
fluxes were examined with the FVS ET partitioning method using 10 Hz
time series eddy covariance (EC) measurements over a non-irrigated
alfalfa field. This ET partitioning method successfully reproduced the
seasonal and inter-annual variations of partitioned E and T fluxes.
Temporal variability of Rqc was consistent with the expected shifts in
the dominance of T or E. The Rqc was strongly regulated by vegetation
status, hay harvesting, and rainfall events. A strong linear relationship
between Rqc and LAIMOD offered the potential of determining the sea-
sonality of Rqc in alfalfa using remotely-sensed vegetative metrics.
Transpiration accounted for roughly 80% of the total ET during the
alfalfa growing season. Since there are no additional equipment needed
beyond a standard EC system for this partitioning method, it can be
easily applied to existing EC datasets, which are available across loca-
tions and biomes, to better understand the trade-offs between carbon
gain and water loss at the canopy scale. Ability of separating compo-
nent fluxes, as demonstrated in this study, can be a useful tool not only
to better interpret the measured fluxes but also to improve models of
CO2 and H2O fluxes. This study can provide a foundation for future
applications of this ET partitioning procedure at additional EC sites.
However, further research is needed to determine the biases in parti-
tioned fluxes using additional independent measurements of compo-
nent fluxes.

Fig. 10. Midday (11:00 am – 2:00 pm local time) average values of the corre-
lation (Rqc) between carbon and water fluxes (a), and daily values of net eco-
system CO2 exchange (NEE, b) and evapotranspiration (ET, c) for the 2017
alfalfa growing season. Few major rain and harvest events are marked. Fig. 11. Monthly midday (11:00 am – 2:00 pm local time) average values of the

correlation (Rqc) between carbon and water fluxes (a), monthly average
Moderate Resolution Imaging Spectroradiometer (MODIS)-derived leaf area
index (LAIMOD, b), and the relationship between them (LAIMOD and Rqc, c). Data
were binned for the entire study period. Bars represent standard errors of the
mean.
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