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• Proteobacteria, Bacteroidetes, and
Actinobacteria accounted for most of
the taxa detected.

• Monoterpenoid biosynthesis was the
most significantly-enriched pathway in
rhizosphere.

• The rhizosphere bacteria had the
highest gene abundances.

• Salinity and drought affected the above-
and belowground microbiomes
differently.
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Salinity is a major problem facing agriculture in arid and semiarid regions of the world. This problem may vary
among seasons affecting both above- and belowground plant microbiomes. However, very few studies have
been conducted to examine the influence of salinity and drought on microbiomes and on their functional rela-
tionships. The objective for the study was to examine the effects of salinity and drought on above- and below-
ground spinach microbiomes and evaluate seasonal changes in their bacterial community composition and
diversity. Furthermore, potential consequences for community functioning were assessed based on 16S V4
rRNA gene profiles by indirectly inferring the abundance of functional genes based on results obtained with
Piphillin. The experiment was repeated three times from early fall to late spring in sand tanks plantedwith spin-
ach (Spinacia oleracea L., cv. Racoon) grownwith saline water of different concentrations and provided at differ-
ent amounts. Proteobacteria, Cyanobacteria, and Bacteroidetes accounted for 77.1% of taxa detected in the
rhizosphere; Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil, while
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria accounted for 55.35% of taxa detected in the
phyllosphere. Salinity significantly affected root microbiome beta-diversity according to weighted abundances
(p = 0.032) but had no significant effect on the relative abundances of microbial taxa (p = 0.568). Pathways
and functional genes analysis of soil, rhizosphere, and phyllosphere showed that the most abundant functional
genes were mapped to membrane transport, DNA repair and recombination, signal transduction, purine
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metabolism, translation-related protein processing, oxidative phosphorylation, bacterial motility protein secre-
tion, and membrane receptor proteins. Monoterpenoid biosynthesis was the most significantly enriched path-
way in rhizosphere samples when compared to the soil samples. Overall, the predictive abundances indicate
that, functionally, the rhizosphere bacteria had the highest gene abundances and that salinity and drought af-
fected the above- and belowground microbiomes differently.

Published by Elsevier B.V.
1. Introduction

Soil water content may influence plant growth and persistence of
microbes on the aboveground part of plants. This may be a function of
water-use efficiency byplants due to salinity effects on soilwater poten-
tial. Extended drought, caused by changes in weather patterns, can ex-
acerbate the problem of salinity (Froelich et al., 2012). Salinity affects
plants and microbes via two primary mechanisms: osmotic effect and
specific ion toxicity (Oren, 1999; Chhabra, 1996). A change in soil salin-
ity is frequently described as the single most important parameter de-
termining the suitability of recycled water for agricultural irrigation
(USEPA, 2004). The southwestern USA is expected to have increases in
temperature, receive less springtime precipitation, and have more fre-
quent and severe droughts during the next few years (Karl et al.,
2009; Hellberg and Chu, 2015).

The analysis ofmetagenomic data fromphyllospheremicrobial com-
munities has shown a correlation between taxonomic composition and
community structure with environmental features (geography, climate,
season, pollutant exposure, phytosanitary treatments), or evenwith the
evolutionary history of the plant species or plant population (Bringel
and Couée, 2015). These microorganisms must adjust to multiple fluc-
tuations involving seasonal cycles, circadian cycles, and plant develop-
mental stages. At the same time, plant water and other nutrients may
not be readily available to leaf-surface microorganisms, thus making
life extremely difficult for them to grow andmultiply. Therefore, under-
standing of aboveground microbiota as providers of specific functions,
for example, pathogen exclusion (Newton et al., 2010) and nitrogen fix-
ation (Furnkranz et al., 2008) relies on continued efforts to catalog the
microbial communities on plant foliage.

In this study, we investigated the implied functional responses of
phyllosphere, soil and rhizosphere microbial community composition
to increased salinity and drought, both associated with the climate of
the southwestern United States. The paradigm of above- and below-
ground plant microbiomes controls most of the geochemical activities
of plants. Recently, it was reported that microbial formation of stable
carbon matter is more efficient from belowground than aboveground
input (Sokol and Bradford, 2018). This increased stability is partly due
to the greater efficiency of the microbial formation pathway by the rhi-
zosphere microbial communities relative to bulk soil or the above-
ground carbon sources (Sokol and Bradford, 2018). However, these
authors suggested that the bulk soil had greater capacity to form
mineral-stabilized soil carbon due to its greater overall volume, and
that the relative contributions of aboveground versus belowground car-
bon inputs depended greatly on the ratio of rhizosphere to bulk soil.

Microbiome community and changes thereof due to environmental
parameters generally are described using 16S rRNA gene sequencing
methods, whilemechanistic information on these changes require func-
tional analysis (Koo et al., 2017). Shotgun sequencing is the most effec-
tive method of analyzing the functional capabilities of microbial
communities by allowing detection and quantification of functional
genes. However, in recent years, new metagenomics inference tool
that utilizes 16S rRNA data to predict the functional attributes of micro-
bial assemblages have been introduced. These include PICRUSt (Langille
et al., 2013), Tax4Fun (Aßhauer et al., 2015), and Piphillin (Iwai et al.,
2016). Thesemetagenomics inference tools derive functional gene con-
tent of microorganisms based on the known genome information of
bacteria closest to their taxonomic lineage (Koo et al., 2017). The 16S
rRNA data from thesemetagenomics inference tool and the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database are compared to pre-
dict functional attributes of microbial communities in the studied
environment. It is now well established that reciprocal interactions be-
tween aboveground and belowground communities not only shape the
structure and functioning of terrestrial ecosystems but also, they regu-
late their response to global change across a hierarchy of temporal
and spatial scales (Bardgett, 2018; Jansson and Hofmockel, 2018).

The study investigated the above and belowground microbial com-
munity compositions and their inferred functions in response to sea-
sonal climate trends associated with different soil salinity levels and
drought in an outdoor lysimeter experiment. The main hypothesis for
the study was that bacterial community composition across the experi-
mental plots (lysimeter) would change across different growing sea-
sons. The main objectives of the study were to determine bacterial
community richness and composition in response to seasonal changes
under different soil salinities and to determinewhich groups of bacterial
responds differently due to changes in season. Three experiments were
conducted during winter, spring, and summer to coincide with spinach
growing season in the southwestern United States. Most of the summer
spinach production is done from April to October in California's Salinas
Valley, while winter production (from November to March) takes place
in the desert regions of Yuma, Arizona and California's Imperial Valley.

2. Materials and methods

2.1. Field setup and experimental treatments

The study was carried out in lysimeters (sand tanks) containing
loamy sand mixed with 10% peat moss (on a volume basis) with an av-
erage bulk density of 1.38 g/cm3, and with an average volumetric water
content of 0.30m3/m3 at saturation (Ors and Suarez, 2017; Ibekwe et al.,
2017). Geochemical characteristics of the soil and chemical composition
of the salinity treatments used for the study had previously been pub-
lished (Ors and Suarez, 2016). The sand tanks consisted of 24 units
plantedwith spinach and used to determine the interactive effects of sa-
linity and drought treatments on above- and belowground
microbiomes of spinach (Spinacia oleracea L., cv. Racoon). The first and
second sets of experiments started on 7 December 2012 and 14 March
2013, respectively, in large sand tanks (3.0 m L × 1.5 m W × 2.0 m D),
while the third experiment started on 9 April 2013 in small sand tanks
(202.5 cm L × 81.5 cm W × 85 cm D). Seeds were planted in three
rows 40 cm between rows in sand tanks at 10 cm apart and thinned
to 25 plants per row.

Measurements of the water content (θ) of the substrate were ac-
complished using calibrated (ln(θ) = −6.99 + 16 V − 9.9 V2, R2 =
0.91) dielectric soil moisture sensors (ECH2O-10 probes, Decagon, Pull-
man,WA, USA1) inserted at 10 cm depth. A total of 16 ECH2Omoisture
sensors were used in the study. The ECH2O moisture sensors were con-
nected to a multiplexer (AM25T, Campbell Sci., Logan, UT, USA), which
in turn was connected to a data logger (CR10X, Campbell Sci.) to record
the sensor output. The water retention curve was determined using the
pressure plate method (Klute, 1986). The measured water contents
from the sensors were then converted to matric potential using the
water retention curve. Drought treatments were designed with soil
water matric pressure targets of D1 (−200 to −300 kPa), treatment
D2 (−400 to −500 kPa) and control D0 (no water stress, N−45 kPa).



Fig. 1. Dimensional reduction of the Bray-Curtis distance between microbiome samples, using the PCoA ordination method.
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Higher irrigation frequencies were maintained in control D0 than in
drought D1 and D2, in accordance with instrument readings to keep
matric potential within the specified limits (in kPa) (Ors and Suarez,
2017). Each sand tank was irrigated with solutions prepared in an indi-
vidual reservoir (1.5 m diameter×2.2 m deep). Irrigation water with
1) modified half-strength Hoagland's nutrient solution and 2) with
salt solutions were pumped from water reservoirs (vol. = 3605 L for
large sand tanks) housed underneath the tank facility to the sand
tanks above, completely saturating and leaching the sand culture me-
dium. For each tank the nutrient/salt solution returned to the reservoir
after each irrigation cycle, through a subsurface drainage system at the
bottom of the tanks, thus maintaining an essentially uniform and con-
stant salinity in the root zone (Ors and Suarez, 2016). The third experi-
ment was conducted in smaller sand tanks (Poss et al., 2004) consisting
of 24 experimental plant growth units containing loamy sand with an
average bulk density of 1.4 g cm−3 with planting on the date shown
above and irrigated from individual reservoirs (1740-L) containing a
modified half-strength Hoagland's nutrient solution combined with
various concentrations of NaCl and other salts to achieve target salin-
ities, measured as electrical conductivity (ECiw) and expressed in dS
m−1. The system was initially flushed with a nutrient solution made
up in Riverside tap water (ECiw = 0.65 dS m−1) so also was the source
water for irrigation.

Nutrient solution used for the study was modified half Hoagland's so-
lution added of (in mmolesc L−1): 2.5 Ca (NO3)2, 3.0 KNO3, 0.17 KH2PO4,
1.5 MgSO4, 0.05 Fe as sodium ferric diethylenetriamine pentaacetate
(NaFe-EDTA), 0.023 H3BO3, 0.005 MnSO4, 0.0004 ZnSO4, 0.0002 CuSO4,
and 0.0001 H3MoO4. Low-salinity control (ECiw = 0.85 dS m−1) was the
base nutrient solution without added salts in all experiments. Electrical
conductivities of the irrigation waters (ECiw) were 4, 7, 9, 12, and 15 dS
m−1, achieved by adding CaCl2, MgCl2, NaCl, Na2SO4 to the base tap
water-nutrient solution (low-salinity control). Salt concentrations used
were as previously described and based on EXTRACT Chem model
(Suarez and Taber, 2012) to predict the ion composition needed to
achieve the target ECiw values. After the first pair of true leaves was fully
expanded on all the plants, salinity treatments were initiated, and salt
was added to the irrigation water in four equal increments over a four-
day period to avoid osmotic shock to the seedlings. Sand tanks were irri-
gated once daily for large tanks and twice for small tanks to completely
saturate the culture medium in non-drought treatments. The first exper-
iment was a complete randomized design with three replications and
four salinity treatments including control (ECiw = 0.85 dS m−1) and
two different saline water types, dominated by either sulfate or by chlo-
ride ions. The second and third experiments had 6 different salinity levels
including control treatment (ECiw b 0.85 dS m−1) and only chloride-
dominated water type. In subsequent experiments we used only
chloride-dominated water type as the first experiment did not show
any statistical differences in spinach yields, at any salinity levels, between
sulfate- and chloride-dominated water types.

Chemical composition of the salinity water treatments used in the ex-
periments was reported elsewhere (Ors and Suarez, 2016). The concen-
trations of Na, K, Mg, Ca, and total- S on plant samples were determined
fromnitric acid digestions by inductively coupled plasma optical emission
spectrometry (ICP-OES). The average temperatures (°C) and reference
evapotranspiration (ET0) that occurred during the experiment was ac-
quired from the California Irrigation Management Systems (CIMIS)
weather station no. 44 at the University of California Riverside, California
(Koike et al., 2011), and the temperature trend for weather station no. 44
during the past 20 years was recently reported (Ibekwe et al., 2017).

2.2. DNA extraction and V4 16S sequencing

DNAwas extracted from plant samples for microbiome analysis col-
lected from triplicate plots at the end of the experiment. Ten grams of

Image of Fig. 1


Fig. 3. Sample library size. Each point above represents the number of reads in a sample. Sequences per sample ranged from aminimumof 68,440 to amaximumof 717,922 filtered reads.

Fig. 2. Alpha-diversity estimates. Soil samples had higher alpha diversity than root or leaf samples.
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Fig. 4. Phylogenetic tree at the phylum rank. The height of each bar indicates the number of samples containing that phylum. The most abundant -level clades are colored with the
remainders in light gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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non-rhizosphere soil samples were collected at least 10 cm away from
plants, and rhizosphere samples were collected after shaking loosely-
held soil from roots into stomacher bags and weighed. At the same
time, leaf samples were cut above the soil surface with a sterile blade
placed in the stomacher bags and weighed. Community DNA was ex-
tracted from the three sample types with the Power Soil DNA Kit
(MoBio Laboratories, Solana Beach, CA) and stored at−20 °C after fur-
ther cleanup steps with DNA Clean and Concentrator (Zymo Research
Corp- Irvine CA). The cleaned-up sampleswere used forMiSeq sequenc-
ing after quantificationwith a Nanodrop ND-2000 C spectrophotometer
(Nanodrop Technologies, Wilmington DE), run on 1.0% agarose gel and
passed through additional cleanup before sequencing. DNA samples
were profiled using Second Genome's Microbiome Signature Discovery
service (SanBruno, CA, USA), Illumina sequencing assays to trackmicro-
bial population dynamics above and below plants, KEGG Pathways, and
genes profiles across the three planting seasons.

2.3. Profiling method and library preparation

To enrich the sample for bacterial 16S V4 rDNA region, DNAwas am-
plified utilizing fusion primers designed against the surrounding con-
served regions which are tailed with sequences to incorporate
Illumina (San Diego, CA) adapters and indexing barcodes. Each sample
was PCR amplified with two different bar coded V4 fusion primers
515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGAC
TACVSGGGTATCTAAT-3′) (Caporaso et al., 2011), and PCR products
were quantified by fluorometric method (Qubit or PicoGreen from
Invitrogen, Life Technologies, Grand Island, NY). Samples that met the
post-PCR quantification minimum were pooled equimolar and ad-
vanced for sequencing. A pool containing 16S V4 enriched, amplified,
bar-coded samples were loaded into a MiSeq® reagent cartridge, and
then onto the instrument along with the flow cell. After cluster forma-
tionon theMiSeq instrument, theampliconswere sequenced for 250 cy-
cles with custom primers designed for paired-end sequencing.

2.4. Data analysis methods

Representative OTU sequences were assigned taxonomic classifica-
tion viaMothur's Bayesian classifier, trained against theGreengenes ref-
erence database of 16S rRNA gene sequences and clustered at 99%
(McDonald et al., 2012). Sequenced paired-end reads were merged
using USEARCH and the resulting sequences were compared to an in-
house strain database using USEARCH (Edgar, 2010). All sequences hit-
ting a unique strainwith identity ≥99%were assigned a strain Operation
Taxonomic Unit (OTU). To ensure specificity of the strain hits, a differ-
ence of ≥0.25% between the identity of the best hit and the second-
best hit was required (e.g. 99.75 versus 99.5). For each strain OTU, one
of the matching reads was selected as representative and all sequences
were mapped by USEARCH against the strain OTU representatives to
calculate strain abundances. The remaining non-strain sequences were
quality- filtered and dereplicated with USEARCH (Edgar, 2010).
Resulting unique sequences were then clustered at 97% by UPARSE
(de novo OTU clustering) and a representative consensus sequence
per de novo OTUwas determined (Edgar, 2013). The UPARSE clustering
algorithm comprises a chimera filtering feature that discards likely chi-
meric OTUs. All non-strain sequences that passed the quality filtering

Image of Fig. 4
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weremapped to the representative consensus sequences to generate an
abundance table for de novo OTUs. After the taxa were identified for in-
clusion in the analysis, the values used for each taxa-sample intersection
were populatedwith the abundance of reads assigned to each OTU in an
‘OTU table’. A corresponding table of OTUGreengenes classificationwas
generated as well. Alpha-diversity (within sample diversity) metrics
were calculated to estimate sample richness and Shannon diversity.
Beta-diversity (sample-to-sample dissimilarity) metrics were calcu-
lated for the inter-comparison in a pair-wise fashion to determine dis-
similarity score and stored in a distance dissimilarity matrix.
Abundance-weighted sample pair-wise differences were calculated
using the Bray-Curtis dissimilarity. All analyses were generated using
Second Genome R package (vegan: R package version 2.2-1). Bray-
Curtis dissimilarity was calculated by the ratio of the summed absolute
differences in counts to the sumof abundances in the two samples using
the Jaccard index. Hierarchical clustering maps of the samples in the
form of dendrograms and principal coordinate analysis (PCoA) were
used to visualize complex relationships between samples. Permuta-
tional analysis of variance (PERMANOVA) was utilized to find signifi-
cant differences among discrete categorical or continuous variables
based on the Monte Carlo permutation test. Univariate differential
abundance of OTUs was tested using negative binomial noise model
for the overdispersion and Poisson process intrinsic to this data, as im-
plemented in the DESeq2 package (Love et al., 2014) and described for
microbiome applications in (McMurdie and Holmes, 2013).
2.5. Inference of metagenomes

Piphillinwas developed to leverage themost up-to-date genomeda-
tabase for metagenome prediction from 16S rRNA sequence data (Iwai
et al., 2016), using the KEGG 70.1 (Kyoto Encyclopedia of Genes andGe-
nomes) orthologues database. A genome was inferred for each 16S
rRNA OTU based on the sequence identity between an OTU's represen-
tative sequence and the nearest neighbor 16S rRNA sequence from the
genome databases restricted to a minimum identity of 97%. Then, OTU
abundance was normalized by 16S rRNA copy numbers and further
multiplied by the gene contents of each inferred genome to predict
each sample's metagenome. To identify differentially abundant KEGG
pathways and genes, a Wilcoxon Rank Sum test was employed. Where
samples could be paired across categories, a paired Wilcoxon signed
rank test was used. P-values were adjusted by the Benjamini-
Hochberg procedure to weed out false discovery rates from multiple
testing (Benjamini and Hochberg, 1995).

Image of Fig. 5
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3. Results

3.1. Bacterial community composition between aboveground and below-
ground spinach microbiome

Overall, microbiome composition was significantly (p = 0.001)
driven by sample type (soil, rhizosphere, and phyllosphere) and by sea-
son (p = 0.003), but not by salinity (p = 0.568) based on Bray-Curtis
distance between microbiome samples using the PCoA ordination
method. Compositional differences based on sample type and seasons
were also reflected in the sample beta-diversity using weighted abun-
dances (Fig. 1). Although March was cooler than both May and June,
root and soil microbiome samples in March andMay weremore similar
than those isolated in June, based on dimensional reduction of the Bray-
Curtis distance between microbiome samples, using the PCoA ordina-
tion method (Fig. 1). Samples formed three clusters based on sample
type andmonthswhenfirst separated along theprimary axis (axis 1) ac-
cording to sample type. Separation along axis 2 was based on months
with root and soil samples from June separated from those collected
inMarch andMay. Overall, 56% of the sample variations were explained
by the two major axes. Salinity significantly affected root microbiome
beta-diversity using weighted abundances (p= 0.032) but did not sig-
nificantly affect the relative abundances of microbial taxa (p = 0.568)
based on PERMANOVA. This was confirmed by hierarchical clustering
by the Ward method and Bray-Curtis distance (Fig. S1). According to
our results, samples formed two primary clusterswith leaf samples sep-
arated from root and soil samples; then sub-clustered by month. Sam-
ples did not cluster by any other covariate. Seasonal variations
significantly (p = 0.003) affected the beta-diversity using weighted
abundances for both soil and root sample types, but not leafmicrobiome
(p = 0.057). Soil samples had higher alpha diversity than root or leaf
samples (Fig. 2). This was reflected by the higher Shannon diversity in-
dices observed from soil samples. Looking at specific sample type,
higher alpha diversity was observed in May than in June and March
from leaf microbiome. This result was different from that obtained
from soil and root samples, which showed no differences (Fig. 2).

Sequencing per sample ranged from a minimum of 68,440 to a maxi-
mum 717,922 filtered reads (Fig. 3). Rarefaction curves with an average
number of OTUs detected versus sequencing library size show curves ap-
proaching ahorizontal slope is nearly saturated,with fewnewOTUsundis-
covered (Fig. S2). A curve with a steep slope remaining in the plot has not
been sequenced to saturation, and substantial quantities of additional
OTUs are expected upon further sequencing. Across the three sample
types, Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for
77.1% of taxa detected in the rhizosphere, and Proteobacteria, Bacteroidetes,
and Actinobacteria accounted for 55.1% of taxa detected in soil, while
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria accounted for
55.35% of taxa detected in the phyllosphere (Fig. 4). From our analysis,
Proteobacteriawere the most abundant phyla represented across all sam-
ple. Root and soil samples contained high relative abundances of
Bacteriodetes and Actinobacteria.
3.2. Pathways and functional gene analysis of soil compared to roots

Eight of the most proportional abundance pathways for soil and
roots were ABC transporters, biosynthesis of amino acids, two-
component system, carbon metabolism, aminoacyl-tRNA biosynthesis,
Fig. 5. (A). Proportional abundance of the top inferred pathways for soil vs root. Plot shows them
relative abundances of the top 8 pathways. (B). Proportional abundance of the top inferred g
deviation (sd) are values for percent relative abundances of the top 8 genes. ABC-2.A; ABC
permease protein, ABC.PE.S; peptide/nickel transport system substrate- binding protein, GST
binding protein, mcp; methyl-accepting chemo- taxis protein, SIG3.2, rpoE; RNA polymeras
protein. (C). KEGG pathway prediction feature selection for soil vs root. Graphic summary of
selection for soil vs root. Graphic summary of functional gene prediction feature selection.
purine metabolism, ribosome, and oxidative phosphorylation (Fig. 5).
ABC transporters and two-component system pathways had higher rel-
ative percentmean in the root samples when compared to the soil sam-
ples. Biosynthesis of amino acids, carbon metabolism, aminoacyl-tRNA
biosynthesis, and purinemetabolism had highermean relative percent-
ages in soil as compared to root samples (Fig. 5A). The most abundant
functional genes were related to transport systems and membrane re-
ceptor proteins (Fig. 5B). Percent relative mean values of two of the
most abundant membrane receptor proteins were RNA polymerase
sigma70 factor, ECF subfamily (SIG3.2, rpoE) and iron complex outer-
membrane receptor protein (TC.FEV.OM). However, the relative pro-
portions were not significantly different from each other as well as be-
tween rhizosphere and soil samples. Also, the percent relative
abundances of the transport genes were not significantly different
from each other, but the percent relative concentrations of ABC-2 type
transport system ATP-binding protein (ABC-2. A) and ABC-2 type trans-
port system permease protein (ABC-2.P)were significantly different be-
tween soil and rhizosphere samples (Fig. 5B). Furthermore, KEGG
pathway prediction feature selection identified 126 pathways that
were differentially abundant between the soil and root samples
(Fig. 5C, Table S1). Only the 20 functional pathways with a log 2-fold
change N2 are shown. The monoterpenoid biosynthesis pathway was
one of the 97 pathways significantly enriched in rhizosphere samples.
Signaling pathway for calcium was one of the 29 pathways enriched
in soil samples (data not shown). There were 2198 significantly differ-
ent genes detected between soil and root samples (Fig. 5D). About
871 genes were significantly enriched in soil samples and 1327 genes
were significantly enriched in rhizosphere samples. Only the 42 genes
with a log 2-fold change N3.3 are shown. Gene names are listed in
Table S2. Functional gene and pathway profiles were inferred from the
observed 16S rRNA OTUs using Piphillin (Iwai et al., 2016). Across all
54 samples, 7283 genes and 312 pathways were inferred from the
19,188 OTUs observed.
3.3. Pathways and functional genes analysis of rhizosphere (root) compare
to leaf

The relative percent of the most abundant pathways between the
rhizosphere and leaf surface microbiome were biosynthesis of amino
acids, ABC transporters, ribosome, two-component systems, carbonme-
tabolism, aminoacyl-tRNA biosynthesis, purinemetabolism, and pyrim-
idine metabolism (Fig. 6A). Large variabilities (standard deviations)
were observed in most of the leaf pathways as compared to root path-
ways and the large variations were associated with biosynthesis of
amino acids, ABC transporters, ribosome, aminoacyl-tRNA biosynthesis,
two-component system, purine metabolism, and pyrimidine metabo-
lism (Fig. 6A). This is quite different from what was observed between
soil and the rhizosphere, where higher variations in pathways were ob-
served in the rhizosphere than in soil. At the gene level, the proportional
abundance of the top eight inferred genes encoded for outer-membrane
receptor proteins from the iron complex (TC.FEV.OM), methyl-
accepting chemotaxis protein (MCP), RNA polymerase sigma70 factor,
ECF subfamily (SIG3.2, rpoE), peptide/nickel transport system
substrate-binding protein (ABC.PE.S), glutathione transferase (GST),
iron complex outer- membrane receptor protein (TC.FEV.OM), tRNA
Arg, tRNALeu and tRNAMet (Fig. 6B). A summary of functional pathway
prediction feature selection based on KEGG pathway prediction showed
ost abundant inferred pathways.Mean and standard deviation (sd) values are for percent
enes for soil vs root. Plot shows the most abundant functional genes. Mean and standard
-2 type transport system ATP-binding protein, ABC-2.P; ABC-2 type transport system
, gst; glutathione Strans-ferase, livK; branched-chain amino acid transport System sub-
e sigma70 factor, ECF subfamily, TC.FEV.OM; iron complex outer- membrane receptor
functional pathway prediction feature selection. (D). KEGG ortholog prediction feature

http://TC.FEV.OM
http://TC.FEV.OM
http://TC.FEV.OM
http://TC.FEV.OM
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that 82 pathways were significantly different between the leaf and root
samples (Fig. 6C), and 81 of the pathways were enriched in root sam-
ples. Only one pathway, phosphotransferase system, was enriched in
leaf relative to root samples. At the gene level, 2523 genes were signifi-
cantly enriched between the leaf and root samples (Fig. 6D) and 896
genes were enriched in leaf samples and 1627 genes were enriched in
root samples.
4. Discussion

4.1. Soil, salinity, and drought interactions

This study aimed to characterize the agricultural microbiome shifts
under drought/salinity conditions, performed under varying soil salin-
ities in an outdoor lysimeter system cultivated with spinach. Spinach

Image of Fig. 6
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optimal growth condition is between 15 and 20 °C (FES, 2005) and in
this study, the average monthly temperatures during the growing pe-
riods of experiment I, II and III were 15.94 °C, 17.9 °C, 20.15 °C. During
the planting seasons, water demands were different due to contrasting
differences in evapotranspiration, driven by differences in temperature.
These differences in temperatures resulted in significant ET0 effects on
soil microbial composition during the three planting seasons. It was
also observed that ECiw = 9 dS/m water did not cause any yield loss
in the first experiment (March), therefore irrigation water treatments
of ECiw of 12 and 15 dS/m were added to experiments II and III (May
and June). In these experiments, there was a relative shoot yield in-
crease at low salinity levels and then a decrease in yield at the higher sa-
linity levels (Ors and Suarez, 2016). In contrast to experiment I,
experiments II and III had yield losses at ECiw = 9 dS/m. However
freshweights of plants were higher at EC 4 and 7 dS/m treatments com-
pared to the controls in experiments II and III, as were observed for ex-
periment I (Ors and Suarez, 2016). The growing period was the longest
for the first experiment, due to temperatures below the optimum for
the crop, shorter for the second experiment, and the shortest for the
third experiment. This is consistent with the fact that temperatures in-
creased drastically from one growth period to the next in experiments
I-III. Ors and Suarez (2016) recently reported that during thefirst exper-
iment, ET0 was very low during the first ten days, averaging 1.96 mm
d−1. However, ET0 values were 4.43- and 6.36-mm d−1for experiments
II and III, respectively. The high temperature correspondedwith increas-
ing solar radiation from the experiment I to III, although relative humid-
ity was similar for the three experiments based on CIMIS weather
station no. 44 at the University of California Riverside (Ibekwe et al.,
2017).
4.2. Microbial community composition

Results suggest that droughtwas a significant factor driving changes
inmicrobial composition. A key question regarding the distinct bacterial
communities in lysimeter soils concerns the environmental parameters
responsible for these differences, especially given that salinity did not
significantly affect the relative abundances of microbial taxa. For DNA
phylotypes, seasonal variation (temperature) was the only significant
predictor of alpha diversity, with the most significant differences ob-
served on leaf surfaces (Fig. 2) and leaf surface temperature affecting
leaf microbiome moderately. These data support the hypothesis that
seasonal variations are important ecological factors affecting microbial
dynamics. This observationmay be different with different plants or ge-
notypes, because it has been observed that microbial community com-
position varies by plant genotype, suggesting that plant genotype can
select for soil microbial characteristics (Aira et al., 2010). However, in
another study, it was observed that rather than community divergence
between cultivars, the divergence between soils substantially contrib-
uted to microbiome variation (Chen et al., 2017).

Our study also showed that salinity had a significant effect onmicro-
bial diversity. This implies that once diversity is established and the
composition of the community is set, the community members are
therefore adapted to the salinity stress, and the dominant members of
the community continue to sustain themselves due to environmental
adaptation (Fig. SI). Our study also showed that salinity effect on soilmi-
crobial diversity was also dependent on the salinity range they experi-
enced. This is consistent with our previous study in the same
lysimeter plots using cucumber as test plants that showed that soil
and rhizosphere developed its own microbial communities in correla-
tion with distinctly different salinity regimes (Ibekwe et al., 2010). It is
Fig. 6. (A). Proportional abundance of the top inferred pathways for root vs leaf. Plot shows them
relative abundances of the top 8 pathways. (B). Proportional abundance of the top inferred ge
deviation (sd) values are for percent relative abundances of the top 8 genes. (C). KEGG pat
feature selection for root vs leaf. Graphic summary of functional pathway prediction feature se
a known factor that high salinity in combination with severe water
stress may be one of the most stressful combinations affecting soil mi-
crobial diversity (de Souza Silva and Fay, 2012). This phenomenon has
been previously explained (Oren, 2002a, 2002b; Oren, 2013) in a way
that life in high salt concentrations is bioenergetically taxing, andmicro-
organisms must maintain osmotic equilibrium between the cytoplasm
and the surrounding medium for the exclusion of sodium ions from in-
side the cell.
4.3. Changes inmetabolic pathways and functional genes based on Piphillin

Changes in metabolic pathways and functional genes in this study
were based on Piphillin algorithm predictions (Iwai et al., 2016) to gen-
erate inferred metagenomes of sample type microbial communities
based on a 97% identity cutoff. About 25.8% of the sample typemicrobial
communities were assigned to genomes by the Piphillin algorithm at
the 97% level with a Mantel correlation (Mantel's r = 0.58; P b 0.001)
between the distance matrices and predicted metagenomic composi-
tions of the sample types. This observation was low but other studies
have captured the same low correlation between the distance metrics
based on phylogenetic/taxonomic and predicted the metagenomic
composition of their samples (Poret-Peterson et al., 2019; Noah et al.,
2019).

From a large amount of data available on transcript-profiling studies
in plants subjected to drought and salt (Chaves et al., 2009), it is becom-
ing apparent that plants perceive and respond to these stresses by
quickly altering gene expression in parallel with physiological and bio-
chemical alterations under mild to moderate stress conditions. These
authors noted that in comparison with drought, salt stress affected
more genes andmore intensely, possibly reflecting the combined effects
of dehydration and osmotic stress in salt-stressed plants (Chaves et al.,
2009). We generated predicted metagenomes of drought and salinity
communities to explore potential metabolic pathways of responsive
taxa, especially in relation to other studies that have started to elucidate
themechanisms bywhich salinity and drought suppress targeted bacte-
ria and plants. Monoterpenoid biosynthesis was the most significantly
enriched pathway in root samples when compared to the soil samples
(Fig. 5C). Monoterpenoids are a class of common secondary plant me-
tabolites, and their production has been shown to be affected by water
stress (Delfine et al., 2005). However, their synthesis is not exclusively
limited to plants and genomic evidence suggests that monoterpene
synthases are common to bacteria (Yamada et al., 2015).

The calcium signaling pathway was the most enriched pathway in
soil samples when compared to root samples (Fig. 5D). Calcium has
been shown to be affected by signals triggered by damage responses
from microbes (Ranf et al., 2014) and is also an important molecular
messenger for nitrate pathways in plants (Riveras et al., 2015). These
metabolites have been confirmed in Streptomyces and Kitasatospora
species. OTU picking resulted in about 14,000 OTUs which were classi-
fied into various predictive functional categories. The most abundant
of these predicted functions were mapped to membrane transport,
DNA repair and recombination, signal transduction, purinemetabolism,
translation-related protein processing, oxidative phosphorylation and
bacterial motility protein secretion (Figs. 5B; 6B; Tables S1 and 2).
Most of these functions are related to maintenance of cell function and
structure which would be performed by every species in the commu-
nity. The predictive abundances indicate that, functionally, root bacteria
had the highest gene abundances (Figs. 5B and 6B). From our previous
study (Ibekwe et al., 2017), sequencing data identified some microor-
ganisms with relatively restricted salt concentration range for growth,
ost abundant inferred pathways. Mean and standard deviation (sd) values are for percent
nes for root vs leaf. Plot shows the most abundant functional genes. Mean and standard
hway prediction feature selection for root vs leaf. (D). KEGG gene ortholog prediction
lection.



12 A.M. Ibekwe et al. / Science of the Total Environment 717 (2020) 137207
aswell as others such asHalomonas elongata, which is awell-known ex-
ample of a bacterium that can adapt to life over the whole salt concen-
tration range from fresh water of low salinity to halite saturation
(Vreeland et al., 1980). During that study, the genus Halomonas were
found in the soil and in the rhizosphere samples with different salinity
concentrations. Their relative percent concentrations were significantly
higher (P = 0.036) in June than in May in the rhizosphere, indicating
that increasing salinity stress to the levels tested in this study did not af-
fect them. The important osmoregulatory mechanism that allows
Halomonas elongata to cope with high salinities is the ability to amass
water-soluble organic compounds, which do not disturb the cell's me-
tabolism even at high cytoplasmic concentrations (Kindzierski et al.,
2017). Ectoine is synthesized in the cell cytoplasm as one of the main
compatible solute (Ono et al., 1999; Galinski and Oren, 1991;
Wohlfarth et al., 1990). Bacteria have specific genes, which encode pro-
teins that function in glucose degradation, anaplerosis and the TCA
cycle, nitrogen metabolism, ectoine synthesis, ectoine degradation,
and in ectoine transport (Kindzierski et al., 2017).

Our data suggest that salinity and drought affected the above- and
belowground spinach microbiomes differently, with salinity negatively
impacting soil and root microbiomes and causing taxonomic and func-
tional differences between the two sample types, but not with leaf
microbiome. Assemblages from leaves based on alpha diversity were
significantly higher inMay than in June andMarch, but no significant ef-
fect was observed in soil and roots because of season or temperature. In
terms of potential function, the use of piphillin allowed the identifica-
tion of diverse genes conferring salt resistance to the above- and below-
ground microbiome encoding for well-known proteins involved in
osmoadaptation between soil and roots, such as transport-binding pro-
teins, transport system permease proteins, glycerol permease and pro-
ton pump, proteins related to repair, replication and transcription of
nucleic acids, transport system substrate-binding protein, chemo-taxis
protein, RNA and DNA helicases and even an endonuclease III. Our
data agrees with the expected assemblage of organisms thriving in an
environment affected by moderate to severe salinity.
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