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ABSTRACT

Soil spatial variability and heterogeneity is a
frustrating but important issue in the field-scale description of
soil physical, chemical, and hydrological parameters.
Geostatistics is a useful tool to study spatial distributions of
soil properties. Geostatistics provides efficient and accurate
methods for estimating soil variables, designing optimum
sampling strategies, and simulating stochastic transport
processes in heterogeneous soils. In this paper, the commonly
used geostatistical methods and their applications in soil
science are reviewed and summarized from over 140
publications.

INTRODUCTION

The fundamentals of geostatistics were developed
empirically by Krige and others during the 1950's to assist in
assessment and management of gold ore reserves in South
Africa ([1, 2. 3, 4]). A coherent body of theory was
developed by Matheron ([5]) for solving ore estimation
problems associated with spatial variations. The theory
embraces a set of specific statistical techniques to quantify the
correlation of spatially distributed random variables, and
perform spatial interpolation of these variables ([6, 7, 8]).

Geostatistical techniques provide a means for
describing the spatial variability of soil properties by
considering  spatial  distributions and  inter-variable
correlations, provide optimum interpolation schemes for soil
mapping, and provide methods for improving estimates of soil
properties ([9]). In soil science, geostatistical methods have
been used to estimate soil properties such as water content ([10
- 12]), soil temperature ([13 - 15]), soil-water pressure head
([16 - 18]), various soil chemical properties ([19 - 29)), soil
texture and structural stability ([19, 30 - 33]), mechanical
impedance ([34]), infiltration rate ([35-38]), water retention
properties ([20, 30, 39, 407), soil salinity ([41 - 43]), and soil
surface topography ([44]). Geostatistics is also used to study
spatial scales and patterns of soil variation to improve
sampling efficiency ([45 - 51).

As a general trend, geostatistics is being increasingly
used as an advanced tool to solve problems in soil science, for
example, large-scale soil mapping, non-point source pollution,
and precision agriculture. The main issue of all the problems
is how to deal with spatial variability and heterogeneity of
random variables involved. Therefore, in this paper we briefly
reviewed the commonly used geostatistical methods.
Applications of the methods in soil science were summarized,
which may provide the insight of geostatistics use.

VARIOGRAMS

Soils are heterogeneous and spatially variable. Spatial
variations with independence are commonly characterized
with a variogram (also called semi-variogram) in geostatistics
([8]). Any set of n values, Z(x,), ..., Z(x,), of a measured soil
property, Z, is called a regionalized or spatial random variable
([52]). The collection of random variables for all points in the
field is the random function Z(x). With # measurements of a
soil property, Z(x,), ..., Z(x,} its sample variogram is estimated
as ([6, 53]

nih}
vy~ (h) =ﬁz [Z(xi+h) —Z(xi)]Z m

where N(#) is the number of sample pairs separated by a lag
distance 2. Two types of estimation errors occur when
calculating the true variogram from a single realization ([6}).
The first is called the variance of estimation and a
consequence of using a limited number of sample
measurements to estimate the variogram. This error is
inversely proportional to the number of sample pairs N(h) at a
given lag distance ([52, 54]). The second type of error is a
manifestation of local fluctuations in the mean value of Z(x).
These fluctuaticns cause estimates of the variogram to vary
from point to point in the field. This source of error is called
the fluctuation variance related to the distribution of the
separation distances between sample pairs ([52, 54]). Two
practical rules for calculating the experimental variogram
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follow directly from these analyses: N(i) > 30, and || <L/2,
where L is the longest possible distance in the sampled field
(16, 9. 52]).

After computing sample variograms, variogram
models should be chosen to represent the spatial structures.
Any mathematical function for variograms must be
conditionally positive-definite, (i.e., increasing or constant
with increasing A, and non-negative) ([9, 55, 56]). In the
literature, functions which meet these criteria are called
authorized functions {[1, 2, 6, 56]). The best advice is to
choose approptiate functions from authorized models. Several
authorized models frequently used in analyses of spatial
variations of soil properties are listed as follows:

1. Spherical model
ylh) =c,+C [1.5(h/a) -
0.5(h/a}?], O<hs<a 2]
=g S e, h>a

where C, is called the nugget, G, + C, is the sill, and
a is the range.
2 Exponential model

ylh) =Cc, +C {1 -exp(-h/a)] [3]

Gaussian medel

(5]

yih) =Cy+C {1 -expl-(h/a)®]} 4

4. Power model (0 <A1<2)
yih) =C,+¢;n (5]

If A =1 we have the linear model.

5. DeWijsian model
y(h) =C, +C,logh [6]

The procedure for fitting an appropriate mathematical
model to sample variogram values usually consists of the
following steps: 1) choosing candidate models from the
authorized models; 2) estimating the model parameters (sill,
nugget, range) either by the eyeball method ([1, 2]) or by using
more objective weighted least squares ([57]) or maximum
likelthood methods ({58, 59]); and 3) choosing the "best”
model among the reasonable candidate models.

Choosing the "best" moedel among the reasonable
candidate models can be difficult because there is rarely any
theoretical ground for choosing a particular model ([60, 61]).
Nevertheless, there are some statistical criteria that can be

employed to pick the "best" model. One such method is the
Akaike information criterion (4IC), which helps to find the
"best" fitted model with the minimum parameters., The
unbiased estimate of the AIC is calculated by

AIC'=n 1n(R) +2p 1

where n is the number of sample variogram values, p is the
number of independent parameters in the model, and R is the
residual sum of squares of deviations from the fitted model.
The model having the lowest AIC is judged "best" ([22, 56,
597).

Another method for deciding the best model from a set
of candidate models is by means of cross-validation ([62]).
This procedure has been misnamed "jackknifing" in the
titerature ([63]) and is in reality a "leave-one-out" method. In
this method, sample values are deleted one at a time and then
kriged (described later) to estimate the missing data point from
the remaining sample values. Statistical analyses of the
kriging errors (differences between estimated and measured
values) and the standardized mean-squared errors (the average
of the kriging errors divided by their respective kriging
variances) determine if a bias is present in the estimation and
if the estimation errors are consistent with the kriging
variances. The average kriging error should be close to zero
for a model to produce unbiased estimates. For kriging errors
to be consistent with the kriging variances, the standardized
errors should be normally distributed with a mean of zero and
a variance close to one ([12, 63]). The use of cross-validation
for model discrimination has been suggested for applications
involving kriging, while thé AJC method has been preferred
for cases where it is necessary to describe the main
characteristics of the spatial variability ([56]).

APPLICATIONS OF GEOSTATISTICAL METHODS
Kriging

The prime use of geostatistical methods is to estimate
soil properties at unsampled sites so that spatial distributions
of the properties within the field can be determined. The
estimation method is known as kriging ([64, 65]). Kriging is
essentially a means of weighted focal averaging based on the
variogram model, which provides the required spatial
information ({66, 67]). Kriging has the advantage over
regression methods by considering the spatial correlation
during the estimation process. Kriging provides both unbiased
estimates with minimum variance and a measure of the
estimation variance. As such, kriging is superior to othr~
interpolation methods ([9, 67]). There are several forms of the
linear and nonlinear kriging equations such as simple kriging,
ordinary kriging, block kriging, universal kriging, and
disjunctive kriging.

Simple kriging assumes that the mean value of the
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random variable is known a priori. This assumption limits the
use of this technique for general estimation problems. Simple
kriging is not be discussed in detail here. Interested readers
can consult Journel and Huijbregts ([6]) for a detailed
explanation of the kriging equations.

Most often the mean value of a random variable is
unknown. The kriging equations can be written so that the
mean value becomies part of the solution. The ordinary kriging
estimator, Z'(x,), of an unsampled site is a linear sum of
weighted observations within a given neighborhood and
expressed in a mathematical form as ([68]):

Z* (%) = 3, A, Z(%,) 8]

where Z*(x,} is the estimate of Z at x,, 4, is the weight assigned
to the ith observation, and n is the number of observations
within the neighborhood. An unbiased estimate of Z(x,) (i.e.,
E[Z7(x;) - Z(x,)] = 0) requires that a constraint be placed on the
weights, A's, such that

i:l A=l 9]

The best linear unbiased estimate of the conditional
expectation of Z(x,) is obtained by using the Lagrangian
technique to minimize the estimation variance. The ordinary
kriging equations result from minimizing the estimation
variance and the unbiased condition of Eq. 9. The kriging
system is a set of #+1 linear equations obtained by setting each
partial derivative equal to zero:

d
A

i

{E{Z(xo)—z*(xo)}ZulZ:l?\ i
=[] i=1,2,...,n

where 4 is the Lagrange multiplier, plus Eq. 9. The system of
equations can be written in terms of the variogram function as
follows:

Zl“\ay(“z'xj“uz (1

vz, - x,)

L,
"

22 )lyB e weny B

y A, =1 [12]
i=1

The system of equations is easily solved using Gauss
elimination and the solution yields the n weights and the
Lagrange muitiplier ([9, 52, 54]). The minimum estimation

variance, or kriging variance, is obtained from

0§=Eﬂz (x,) =2° (x,) Jz}:
[13]
Ay vz, —x ) +p

i=1

Although a contour map drawn from point data and
estimates is the most accurate map, local discontinuities can
obscure longer range trends in soil variables. Also, the
positions of the discontinuities depend on the locations of
particular data points, and a shift in the orientation of an
observation grid can result in a substantially different map.
This is an artifact caused primarily by sampling ([68]). The
shortcomings of point kriging can be avoided by using a
procedure known as block kriging. Block kriging can be
regarded as a more general kriging method of which point
kriging is a special case ([9]). Instead of interpolating between
points, block kriging considers a region with its center. The
variogram values between observed data points and the
interpolated point are replaced by the average values between
the observed points and all points in the region.

In the cases of soil properties exhibiting non-stationary
behavior called drift ([69]), the mean values of soil properties
are not constant even within small neighborhoods but depends
on position within the field ([70]). Universal kriging provides
an unbiased linear estimater when a drift is present. The
universal kriging variance is usually larger than that with
ordinary kriging because of the uncertainty associated with
modeling the drift functions ([66]). The detailed mathematical
explanation of universal kriging is referred to Webster and
Burgess ([66]) and Bregt et al. ([71]).

Disjunctive kriging represents a form of noutacar
kriging which offers an improvement over linear kriging
methods ([65, 72]). For disjunctive kriging unknown
functions must be determined that may or may not be linear.
When these functions are linear and the random function is
multivariate normal, the disjunctive kriging method is
identical to ordinary kriging. One important advantage the
disjunctive kriging methed has over ordinary kriging is that an
estimate of the conditional probability that the value at an
estimation site is greater than an arbitrary critical value, can be
calculated ([6, 73, 74]). This conditional probability is a
useful means for determining the risk of various management
alternatives and plays an important role when the user is
interested in determining the chances that a variable is above
some threshold level.

Kriging has been applied to quantify variabilities of
various spatial variables in soil science. Yost et al. ([22, 23])
used variograms and kriging for geostatistical analyse. of soil
chemical properties in large land areas. Vauclin et al. ([13])
and ten Berge et al. ([14]) utilized kriging to analyze spatial
variability of soil surface temperature. Using kriging Vauclin
et al. ([30]) estimated available water content and water
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content at 1/3 bar. Kitanidis and Vomvoris ([75]) used kriging
and inverse methods to identify permeability distributions in
groundwater modeling. Tabor et al. ([76]) used variogram and
kriging to determine the spatial variability of nitrates in cotton
petioles. They ([77]) also analyzed spatial variability of soil
nitrate and correlated variables: contents of sand, silt, and clay,
pH, electric conductivity, sodium, potassium, and phosphorus
in an irrigated cotton field. Xu and Webster ([78]) applied
kriging to study of top soil properties in Zhangwu County,
China. By minimizing kriging variance, Webster and Burgess
([79]) described sampling and bulking strategies soil
properties. Davidoff et al. ([15]) presented a method to verify
the presence of a trend in studying spatial variability of soil
temperature. Ahmed and Marsily ([80]) estimated
transmissivity in an area 80 x 40 km using kriging combined
with linear regression, kriging with an external drift, and
kriging with a guess field. Webster and McBratney ([26])
developed maps of soil fertility at Broom's Barn by simple
kriging. Wilson et al. ([81]) performed universal kriging to
study spatial dependence of soil-water potentials associated
with septic systems. Stein et al. ([82]) predicted 30-year
,average moisture deficits by means of kriging. Mulla ([83])
used kriging to estimate spatial patterns in clay and sand
contents at 5-m spacing along two 660-m transects. Then
spatial distributions of soil matric suction and hydraulic
conductivity were estimated. Istok and Cooper ([84]), Cooper
and Istok ([52, 54]) applied kriging to study groundwater
contamination. Voliz and Webster ([85]) compared kriging,
cubic splines and soil classification for predicting topsoil clay
content. Bregt et al. ([71]) constructed isolinear maps of soil
water deficit with empirical confidence limits using ordinary
and universal kriging. Gallichand et al. ([86, 87]) showed that
kriging improved the representation of hydraulic conductivity
for subsurface drainage design. Kriging allowed clear
identification as contour maps that could be used to determine
homogeneous block hydraulic conductivity. Gallicharnd et al.
([87, 88)) presented a procedure to consider uncertainty of
hydraulic conductivity and water depth into drainage design,
suing block kriging to estimate the effective hydraulic
conductivity of square blocks with sides equal to the lateral
drain spacing. Using kriging technique, Bregt et al. ([89])
produced the conditional probability maps of the depth from
the surface to the pyritic layer in a study area of 410 ha.
Samra and Gill ([90]) used kriged results to assess variations
of pH and sodium adsorption ratio in a sodium-contaminated
soil and associated tree growth. Kravchenko et al. ([91])
applied variograms and kriging to estimate spatial variability
of soil hydraulic properties in Russia. Using disjunctive
kriging, Yates et al. ([92, 93]) presented spatial distributions
and corresponding conditional probability maps of soil
electrical conductivity. In the context of viral contamination,
Yates and Yates ([94]) used disjunctive kriging as an approach
to management decision making. Webster ([95]) used
disjunctive kriging to estimate the likelihood of copper and

cobalt in the soil.
Cokriging

Cokriging, which has been introduced into the soil
sciences more recently ([12]), uses two or more regionalized
variables simultaneously, and in such a manner that the spatial
correlation information from each variable aids in the
interpolation process. The theory and practice of cokriging is
a logical extension of kriging to situations where two or more
variables are spatially interdependent. Cokriging is preferable
to kriging in the cases of: i) the under sampled problem --
where one variable is more costly or more difficult to obtain
than the other; and ii) sparse apparent sampling density --
where variables are sampled at different locations with only
minimal coincident sampling necessary to calculate the cross-
variograms.  Theoretically, if regionalized variables are
correlated with one another, there should be an overall
improvement in the quality of the estimate based on the
comparison between the kriging and cokriging variances.
Also, there is often a great potential for reducing the sampling
density required for appraising and mapping soil properties by
using an under-sampling strategy. Cokriging allows an
improvement in the estimation of the variable of primary
interest without additional sampling. This may translate into
a more efficient sampling scheme.

When two spatially random variables Z(x) and Z,(x)
are sampled, and a significant correlation between the two
variables exists, the added information due to this correlation
can be used to improve the estimate at an unsampled location
([12, 30, 80]). The added information enters the interpoiation
through the cross-variogram function which gives the
correlation between two variables as a function of separation
distance. The cross-variogram function is analogous to the
variogram function and is a measure of the correlation in space
between two regionalized variables. The moment estimator of
the cross-variogram is given by

N1k
SRR B>

" Zn(n) = 4]

To properly execute cokriging, it is necessary to have two
variograms (one for each variable) and one cross-variogram
for every pair of correlated regionalized variables in the
cokriging system.

A cokriging estimate is a weighted average of the
available data with weights chosen so that the estimate is
unbiased and has minimum variance, analogous to ordinary
kriging. The cokriging estimator for two variables is in the
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form of ([96, 97])

k
) (%g) =25 Ay, By (%) r
@ i=1 []5]
le Ay SR
k Frad
Y, -1 3> A=0 [16]
i=1 j=1 7

where k and k' are the numbers of samples of Z\(x) and Z,(x)
used to estimate the unsampled point, x,, and 4, and A, are the
associated weighing factors for Z,(x) and Z,(x), respectively.
Although in most cases estimates of only one of the random
functions is desired, such as in the under-sampled problem, the
complete cokriging solution will enable estimation of all
correlated functions simultaneously ([96 - 98]). In theory it is
possible to use an unlimited number of variables in the
cokriging system, in practice however, three or four is the
most that can be handled efficiently.

The key step in cokriging is to formulate cross-
variograms of random variables. Standard approaches for
modeling cross-variograms are usually based on sums or
differences of two random variables that are measured at the
same locations. One disadvantage to standard cokriging is that
only common locations can be used to estimate the cross-
variogram. Estimating cross-variograms requires a Jarge
number of locations where data are cellected for both
variables, a condition that is usually not satisfied in practice.
Clark et al. ([99]) presented a variation of cokriging, using
pseudo-cross-variograms. The approach does not require a
large number of common locations where data are available
for all variables. Myers ([100]) gave a general definition of
the pseudo-cross-variogram as

(h) = (~h) =
. 91z 90 [7
EV’ar[z‘l(x) —Zz(x-*h)]

The samplé pseudo-cross-variograms for variable 1 (Z,) and
variable 2 (Z,) are computed by means of

p 18 _
g1z (1) ’_2'152 (2, (x;) (18]
zZ,(x,+n)1*

and
1 N
gan (h) —42}2 (8, [ =

z, (x,+h) 1%

[19]

Replacing cross-variograms in the cokriging estimator with

pseudo-cross-variograms
equations ([100]).

Cokriging was applied to interpolate and map the silt
content of topsoil, taking account of the co-regionalized silt
and sand contents of the subsoils by McBratney and Webster
([48]). Vauclin et al. ([30]) estimated available water content
and water content at 1/3 bar using cokriging with measured
~data of sand, silt and clay contents. Ahmed and Marsily ([§0])
estimated transmissivity in a large field using cokriging with
data on transmissivity and specific capacity. Utilizing
cokriging, Hoeksema et al. ([101]) estimated water table
elevation at unsampled locations based on values of water
table elevation and ground surface elevation measured at wells
and at points along flowing streams. Using simulations of 500
observations in an area of 404 ha of sandy soils, Stein et al.
([10, 11, 82, 102]) predicted 30-year average moisture deficits
by means of kriging and cokriging. In general, soil surface
temperature is much less time consuming and labor intensive
than measurements of water content. Mulla ([83]) used
measured data of surface temperature at 5-m spacing and soil
water content at 20-m spacing along with cokriging techniques
to estimate water content at 5-m spacing on two 660-m
transects. Yates ([103]) utilized disjunctive cokriging to
assess soil salinity. Yates and Warrick ([12]) estimate soil
water content using cokriging with the auxiliary data of bare
soil surface temperature and sand content. Zhang et al. ([331])
improved soil textural estimates using spectral properties and
cokriging. Using kriging and cokriging, Zhang et al. ([104])
estimated trace elements in soils and plants. Zhang et al.
([28]) used cokriging with symmetric pseudo-cross-
variograms to estimate the spatial distribution of soil
chemicals, NO; and Ca. Applying cokriging with non-
symmetric pseudo-cross-variograms, Zhang et al. ([29])
determined solute mass and distribution computations in a
large soil field.

vields the pseudo-cokriging

Other Applications

Based on the spatial structure, the variogram, sampling
strategies have been developed to maximize sampling
accuracy, while minimize sampling number therefore
sampling costs ([33, 105]). McBratney and Webster ([47, 48])
described a geostatistical method for designing optimal
sampling schemes for local estimation and mapping of
regionalized variables of soils. Russo ([106]) and Warrick and
Myers ([107]) presented methods for optimizing the selection
of sampling locations for variogram calculations. Flatman and
Yfantis ([108]) developed geostatistical strategy for soil
sampling. Through geostatistical analyses, Zhang et al. ([50])
developed relationships of variance as a function of samplé
support sizes. Hardy et al. ([109]) initiated a geostatistical
analysis using regraded spoil sampling data to design optimal
sampling strategies for spoil characterization. Zhang et al.
([51]) related plot shape effect and optimum plot sizes to soil
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heterogeneity and spatial variability.

Monte Carlo simulations are powerful tools for
stochastic modeling of water flow and chemical transport in
heterogeneous soils. The first step of Monte Carlo simulations
is to generate random fields of hydraulic properties (such as
soil hydraulic conductivity) and chemical properties (such as
dispersivity and adsorption coefficient for adsorbing
chemicals). Based on knowledge of the mean, variance, and
variogram of physical and chemical parameters, their random
distributions can be generated using unconditional or
conditional simulations. Random field generators based on
geostatistical methods include the turning bands method ([110,
111]) and the fast Fourier transform method (FFT) ([111,
112]). Zhang and Yang ([113]) developed an iterative solution
to solve a stochastic differential equation and provided an
efficient method for simulating soil variability,

Dagan ([114]) conducted stochastic modeling of water
flow and solute transport in groundwater by unconditional and
conditional simulations of hydraulic conductivity and
transmissivity. Russo and Bresler ([39, 40]) treated soil
hydraulic properties as stochastic processes and analyzed their
spatial variability and estimate errors in heterogenous fields.
Morkoc et al. ([115]) analyzed sorghum yield related to soil
heterogeneity using a stochastic approach. Silliman and
Wright ([116]) applied conditional simulations for stochastic
analysis of the paths of high hydraulic conductivity in porous
media. Graham and McLaughlin ([117]) used geostatistical
methods to produce random velocity fields for stochastic
analysis of nonstationary subsurface solute transport. Using
conditional simulations of the log transmissivity, Rubin and
Dagan ([118]) studied impact of transmissivity measurements
on solute travel time in heterogeneous formations. Bellin et al.
({119]) simulated dispersion in heterogeneous porous
formations using stochastic modeling with random
distributions of the log transmissivity generated with the FFT
method.  To simulate field measurements of hydraulic
conductivity in unsaturated heterogencous soils, Russo ([120])
and Tseng and Jury ([121]) used the turning band methed to
generate random fields of a scaling factor which was used to
describe soil heterogeneity. Polmann et al. ([122]) applied
geostatistical methods to characterize spatial variability and
heterogeneity of soil retention and hydraulic functions and
generated random space functions of the hydraulic properties
for stochastic modeling of large-scale flow in heterogeneous
unsaturated soils. Yang et al. ([123, 124]) conducted stochastic
analyses of adsorbing solute transport in two- and three-
dimensional, heterogeneous, unsaturated soils, using
unconditional simulations to characterize random fields of soil
retention and hydraulic conductivity functions as well as
adsorption coefficient for adsorbing chemicals.

Through theoretical analyses of hydraulic head
variograms, Chirlin and Dagan ([125]) provided the insight of
the head spatial variations for steady flow in statistically
homogeneous aquifers, Sisson and Wierenga ([35]) and Vieira

et al. ([36]) studied spatial variability of field infiltration rates.
Other geostatistical analyses of infiltration rates include
Bautista and Wallander ([37]), Cressie and Horton ([38]), and
Berndtsson and Larson ([126]). Hoeksema and Kitanidis
([127]) applied the geostatistical approach to estimate
transmissivity from hydraulic head and transmissivity
measurements for two-dimensional groundwater modeling,
Russo ([128]) presented a geostatistical approach to the trickle
irrigation design in heterogeneous soils. He ([129)) also
utilized a geostatistical approach to investigate the spatial
variability of three soil properties: the saturated hydraulic
conductivity, the soil characteristic parameter, and the
dispersivity, as well as the initial salinity for solute transport
in heterogeneous fields. Conditional simulations were
conducted to analyze the salinity profile and its spatial
distribution during leaching in a 187-ha plot of land and
applied for salinity management. Yeh et al. ([18]) estimated
spatial variability of soil-water pressure in a field soil. Cohen
etal. ([130]) used variograms of digital imagery for evaluating
conifer canopy structure. Using fractal and geostatistical
analyses of over 130 longitudinal dispersivities, Neuman
([131]) proposed a universal scaling rule for hydraulic
conductivities and dispersivities. He concluded that log
hydraulic conductivities constitute a self-similar random field
with homogeneous increments characterized by a variogram

Hs) = cs'™. Mohanty et al. ([132]) proposed a robust-resistant
geostatistical approach to interpret spatial behavior of
saturated hydraulic conductivity of a glacial till soil under no-
tillage system. Mohanty and Kanwar ([133]) analyzed spatial
variability of residual nitrate-nitrogen under tillage systems,
using a composite three-dimensional resistant and exploratory
approach.  Woodbury and Sudicky ([134]) performed
geostatistical characterization of hydraulic conductivity at the
Borden aquifer in Canada. Desbarats and Srivastava ([135])
applied a geostatistical framework to craracterize the
heterogeneous transmissivity field and corresponding steady-
state head and discharge fields. Woldt and Bogardi ([136])
described a methodology for groundwater monitoring network
design using multiple criteria decision making and
geostatistics. Miyamoto and Cruz ([42]) assessed spatial
variability of soil salinity in furrow-irrigated soils. Yates et al.
([43]) used geostatistics to describe chemical distributions of
salt-affected soils. Using geostatistical and stochastic
analyses, Dagan ([137]) related the scale-dependent transport
processes to soil heterogeneity. Neuman ([138]) studied scale-
dependent permeability and flow velocity fields through
fractal and geostatistical analyses. Zhang et al. ([139])
analyzed spatial and temporal distributions of precipitation in
Wyoming using geostatistics. Rahman et al. ([140]) evaluated
spatial variability of Rocky Mountain forest soils using
conventional statistics and geostatistics. Di Federico and
Neuman ([141]) developed scaling methods for random fields
of hydraulic conductivities and dispersivities by means of
truncated power variograms and associated spectra.
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SUMMARY

In this paper, we briefly reviewed several
geostatistical methods commonly used in soil science:
variogram construction, simple kriging, ordinary kriging,
block kriging, universal kriging, disjunctive kriging, cokriging,
and pseudo-cokriging.  During the past two decades,
geostatistics has been applied in soil science to study spatial
variability and heterogeneity, estimate spatial and temporal
distributions, design optimum sampling strategies of soil
properties, and conduct stochastic modeling of water flow and
chemical transport in heterogeneous soils. Geostatistical
analyses have been used to study numerous properties and
transport processes in soil science, such as soil texture,
structure, soil water content, soil water retention, soil
hydraulic ~ conductivity, transmissivity, permeability,
dispersivity, infiltration rate, pressure head, groundwater
depth, soil temperature, soil chemicals, pH, electric
conductivity, soil salinity, soil adsorbing coefficient of
reactive chemicals, trace elements in soils and plants, crop
yields, and precipitation. As a continuing trend, geostatistics
is being combined with other advanced techniques, such as
geographic information system and numerical modeling
([142]), and becoming a powerful tool for studying large-scale
problems in agriculture and the environment.
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