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An Analytical Solution to Saturated Flow

in a Finite Stratified Aquifer’

by S. R. Yates”

ABSTRACT

An analytical solution for the flow of water in a
saturated-stratified aquitard-aquifer-aquitard system of
finite length is presented. The analytical solution assumes
one-dimensional horizontal flow in the aquifer and two-
dimensional flow in the aquitards. Several examples are
given which describe the use of the analytical solution. The
horizontal flow assumption in the aquifer appears to be
approximately valid when the hydraulic conductivity of the
aquitards is less than or equal to about 10 percent of the
aquifer value. A comparison is made between the analytical
solution and a saturated-unsaturated finite-element solution
for a situation where the upper layer is both saturated and
unsaturated. For the situation investigated, the comparison
indicates that the analytical solution provides an alternative
to numerical models even when the upper layer is partially
saturated.

Key words: saturated flow, stratified aquifer,
analytical solution.

INTRODUCTION

In a recent paper, Beck et al. (1987, in review)
described some of the considerations necessary
when constructing a macroscale laboratory stratified
aquifer-aquitard system. Part of the analysis con-
sisted of determining the flow pattern in the
aquifer. Since the overall objective was to maximize
the distance over which the flow in the aquifer is
approximately constant and horizontal (i.e., one-
dimensional), a series of numerical simulations
were carried out to investigate various length-width
ratios and inlet-outlet sizes. These numerical simula-
tions were carried out using the finite-element
method and were quite costly and time-consuming.
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Of equal importance were the costs associated with
the design and implementation of the finite-element
grid system. For each length to width ratio con-
sidered, a new grid system was needed. To reduce
costs, a preprocessor was developed to do many of
the routine calculations. Although this reduced the
man-hours required to set up the grid system, the
costs of developing and using the preprocessor for
each change in aquifer configuration were
considerable.

Analytical solutions offer one means for
reducing the computational costs compared to
numerical techniques (Javandel et al., 1984). This
is especially true when the physical boundaries are
simple and/or the ultimate goal is to obtain a
steady-state solution of some physical property,
since many numerical modeling codes must march
through time towards the steady-state solution as
opposed to calculating it directly (which some
codes will do).

The purpose of this paper is to develop an
analytical solution for the flow of water in a
saturated-stratified aquitard-aquifer system of
finite length and consisting of three layers. The
upper and lower layers are assumed to be aquitards
or aquicludes and the middle layer an aquifer.
Although the hydraulic properties between layers
may be different, it is assumed that within a layer
the hydraulic properties are homogeneous and
isotropic. A solution for an anisotropic system can
be found, in general (see Selim, 1987, for an
anisotropic solution of a problem with a different
geometry), but is not developed here since isotropic
media will be produced during construction of a
physical stratified aquifer system. After solving the
system of equations, the solution will be illustrated
by examples. The first series of examples is for an
hypothetical stratified aquifer 100 m in length.
The final example compares the results from the
analytical solution with those from Beck et al.
(1987) who simulated partially saturated flow in
the upper layer using a saturated-unsaturated
finite-element solution developed by Wagner et al.
(1985).
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Fig. 1. Schematic diagram of the stratified aquifer-aquitard
system where the bold solid and dotted lines indicate
no-flow and prescribed head boundaries, respectively.

ANALYTICAL SOLUTION

The problem domain for which an analytical
solution is sought is shown diagrammatically in
Figure 1. In each of the three regions, the medium
is assumed to be homogeneous and isotropic. This
latter assumption is not required in general and the
effects of anisotropic media can be included easily
(see Selim, 1987). However, since the macroscopic
laboratory aquifer (Beck et al., 1987, in review)
for which this solution was developed is assumed
to be homogeneous and isotropic, the additional
complexity of developing an anisotropic solution
was deemed unnecessary. In the uppermost and
lowermost layers (Regions 1 and 2), the flow of
water is assumed to be two-dimensional whereas in
the middle aquifer the flow of water is assumed to
be one-dimensional. As a consequence of this latter
assumption, the analytical solution described
herein is strictly valid only as the ratio of the
hydraulic conductivities (i.e., K,/K; and K3/K,)
approaches zero. The effects on the solution when
these ratios are not zero will be shown in the
examples section. Generally, accurate results occur
for conductivity ratios up to and including about
K, /K, = K3/K, = 0.1,

The equations which describe the flow of
water in each region of Figure 1 subject to the
listed assumptions are

0’H, 0°H,
+
ax? 9z

d*H, B q:(x) . 92 (x) _

=0 Region1  (la)

K 0 Region 2 1b

'dx? 2a 2a & (1b)
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ax? dz® &
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where Hj is the total hydraulic head for the ith
layer (i.e., Hj = hj + z, where h; is the pressure
head); z is the vertical distance from an arbitrary
reference level; and q(x) [L/T] represents the loss
(for 0 < x < L/2) or gain (for L/2 < x < L) of fluid
from (or to) the aquifer and is defined to be
positive in the positive x and z directions.

The boundary conditions considered for each
region in the aquifer-aquitard system shown in
Figure 1 are

Region 1:
aH, \
— =0 for x = 0; and a<z< F
ox and x =L
(2a)
aH,
— =0 for 0<x<L and z=F
0z
Region 2:
H, =H, for x=0; and-a<z<a
(2b)
H, =Hp for x=L; and-a<z<a
Region 3:
oH
—2-0 for x=0; and-G<z<-a
X and x=1L
(2¢)
dH,

=0 for 0<x<L and z=-G

0z

At the boundaries between regions, continuity
requires the following conditions:

Boundary Between Regions 1 and 2:

for0<x<L and z=2a
oH oH

q(x)=-K, — =-K, — and H, =H, (2d)
0z 0z

Boundary Between Regions 2 and 3 :

for0<x<L and z= -2
oH, oH,

x)=-K =-K; —
(h() 2 37 3 oz

and Hz = H3 (26)

The separation-of-variables technique
(Churchill and Brown, 1978; Haberman, 1983;
Wylie and Barrett, 1982) was used to solve
equations (2a) and (2c¢), which, when written in
terms of a generalized Fourier series, are

A oo
H, (x,z) :70 + = A, cos(kx)cosh{k(F - z)] (3a)
n=1

B oo
H3(x,z)=—23 + ¥ B, cos(kx)cosh[k(G +2)] (3b)
n=1



where k = nn/L are the eigenvalues, and cos(kx)
the eigenfunctions. The constants Ap and By, are
found by using orthogonality.

Determining q, (x) and q,(x) by taking the
derivative with respect to z in equations (3a) and
(3b), evaluating the resulting expressions at z = a
and —a, respectively, substituting the results into
equation (1b), and integrating with respect to x
twice gives an expression for the hydraulic head in
the aquifer

Hy(x)=p;, £ Ancos(kx)sinh[K(F - a)l/k +
n=1

P T By cos(kx)sinh[k(G - a)l/k + Cx + D (4)
n=1

where p, = K,/2aK, and p, = K;/2aK,.

To complete the derivation, the constants of
integration, C and D, and the Fourier coefficients,
Apn and By, must be determined. To do this, the
continuity equations at each of the aquifer-aquitard
boundaries are used [equations (2d) and (2e)].
Equating the hydraulic heads at each of the bound-
aries provides a means for finding the Fourier
coefficients. For the boundary between Region 1
and 2, this gives

%—0 + ozo Ap cos(kx){cosh[k(F - a)] +
n=1

% sinh[k(F —a)]} +

o B
p, 2 —k—n cos(kx)sinh[k(G - a)] =Cx +D (5a)

n=1
whereas for the boundary between Regions 2 and 3

B, o Ag .
— +p; £ — cos(kx)sinh[k(F - a)] +
2 n=1 k

°E° By cos(kx){cosh[k(G - a)] +
n=1
% sinh[K(G - 2)]} = Cx + D (5b)

The eigenfunctions for this boundary value
problem are orthogonal with respect to the weight-
ing function, o (x) = 1. Using the weighting
function, equation (5) can be integrated to obtain
Fourier coefficients in explicit form. Integrating
and manipulating the expressions in equation (5)
gives

Ao =CL + 2D = B, (62)

An =
4C/L
k?cosh[k(F-a)]{1+p,tanh[k(F~a)]+p,tanh [k(G-a)]}
, nodd
(6b)
=0 , leven
B <A cosh[k(F - a)] (6¢)

" cosh[k(G - a)]

The final step necessary to complete the
analytical solution is to determine the integration
constants C and D. Substituting the values for the
Fourier coefficients A, and By, from equation (6)
into equation (4), rearranging and using the
boundary conditions for H, at the inlet and outlet
(ie,atx =0and x = L) gives

4C o
H2(X):T n§1 {nlcos(kx)-1] +Cx+H, (7)

n,odd
where
o = pitanh[k(F - a)] + p,tanh[k(G - a)]
" k*{1+p,tanh[k(F - a)]/k + p,tanh[k(G - a)]/k}
....... (8)
Hy - H
C= (Hp, - 0) (9)
L-8] = ¢&Hl/L
n=1
n,odd
and, for completeness,
4C o
D=H,~— £ ¢, (10)
L n=1
n,odd

Equations (7) through (9) give the solution for the
hydraulic head in the aquifer, and equations (3)
and (6) give the solution for the head in the upper
and lower layers.

Stream Lines

It is also of interest to be able to calculate the
stream lines in the stratified aquifer system.
Because of the horizontal flow assumption in
Region 2 (i.e., the aquifer), the solution for the
stream lines in this layer is trivial. However, since
the flow in the upper and lower regions is two-
dimensional, the stream function must be
determined. The stream function can be calculated
from the potential function (Kirkham and Powers,
1971) by using the Cauchy-Riemann relationships,
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K—=— and -K-—=— (11)
Y. 0X

Integrating the left-hand part of equation (11)
gives the stream function

H
w(x,y)=fK2—-dz+F(x)= f—qdz+F(x) (12)
X

Doing likewise with the right-hand side of equation
(11) gives an analogous equation in terms of the
derivative of H with respect to z plus a function of
integration of G(z). Equating the two relationships
shows that the functions of integration are
constants and without loss of generality can be
taken to be zero.

To determine the stream functions for
Regions 1 and 3, the derivatives of equation (3)
with respect to x are incorporated into equation
(12) and integrated, which gives

Vv, (x,2)=K, ; Ap sin(kx) sinh[k(F~z)] (13a)
=1
nrj()dd

and

Uy(x.2)=K, 3 B, sin(kx)sinh[k(G+2)] (13b)
=1
nr,l()dd

The maximum value for ¥, and 5, respec-
tively, occurs at the points (L/2, a) and (L/2, —a).
Although the solution for the stream lines in the
middle aquifer is trivial given the assumptions con-
cerning the flow in the aquifer, the flux of water
crossing a vertical plane as a function x can be
found by taking the derivative of equation (7) with
respect to x and incorporating it into the definition
of the flux, and is

Q(x) = 2aCK, [(4/L) &k sin(kx)— 1] (14)
n=1

n,odd
10 [
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Fig. 2. Hydraulic head and stream functions when

K,/K; = K3/K, = 0.1, The contour levels for the stream
function are: 0.05, 0.1, 0.15, and 0.2. The contour levels
for the head are given in the text,
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The quantity Q(0) = -2aCK, = Q(L) is the
maximum flow in the middle layer (i.e., the aquifer)
and can be used to normalize the stream function
values [i.e., ¥(x,2) = ¥ (x,2)/Q(0)]. Subtracting the
values from two normalized stream lines (i.e.,
¥a — ¥p) gives the fraction of flow that passes
through a plane that intersects the two normalized
stream lines. Also, ¥ (x,z) is defined such that the
value of the stream function is zero at the no-flux
boundaries.

EXAMPLES

The remaining part of this paper will illustrate
the analytical solution for the flow in a saturated-
stratified aquifer by example. In the following
figures (with the exception of Figures 5 and 6) the
potential and normalized-stream function lines
were obtained by generating a matrix of values at
n points using the solution contained herein. A
contouring routine (Yates, 1987) was used to find
the position of the contour lines which were then
plotted. For Figures 2 through 4 and 7 through 8,
respectively, 713 and 629 discrete values of
hydraulic head and normalized stream function
were used for contouring. The contour levels for
hydraulic head in meters for Figures 2 through 4
are: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, 3.0,
3.5,3.75,4.0,4.25, 4.5, and 4.75; and in Figures
7 and 8 are: 15.3, 15.35, 15.45, 15.55, 15.75,
16.05, 16.25,16.75, 17.25, 17.45, 17.75, 17.95,
18.05, 18.15, and 18.2 ¢cm. The contour levels for
the stream function are given in each figure legend.

Shown in Figures 2 through 4 are contours of
hydraulic head and stream function for a hypo-
thetical stratified aquifer system 100 m in length
and 20 m in depth. The aquifer is located in the
interval -1 <z <1 m (i.e., 2a = 2m) and the upper
and lower aquitards are located in the intervals
1<z<10and -10 <z < -1m, respectively. The
hydraulic conductivity in the aquifer is 1 m/day
and the values for the hydraulic conductivity ratios
for the upper and lower aquitards (i.e., K,/K, and
K;/K;) varies in each of the figures.

In Figure 2 the hydraulic conductivity ratio
is K, /K, = K;/K, = 0.1. The flow of water across
the inlet (and outlet) boundary of the aquifer given
by equation (14) is Q(0) = Q(L) = 0.180 m?*/day.
Dividing equation (13a) and (13b) by Q(0) gives
the normalized stream function ¥ (x,z) which has
maximum values at x = L/2 and z = +a. In this form,
the normalized stream function represents a flow
fraction rather than the actual flow quantity. Ior
the upper and lower aquitards, respectively, the
maximum valuc for the normalized strcam
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Fig. 3. Hydraulic head and stream functions when

K,/K; = 0.1 and K;/K, = 0.01. The contour levels for the
stream function are: 0.05, 0.01, 0.015, and 0.2 in the upper
layer and are: 0,01 and 0.02 in the lower layer. The contour
levels for the head are given in the text.

function is ¥, = ¥, = 0.24 which represents 47.4%
of the flow into the stratified aquifer system.
Therefore, between the points x = 0 and x = L/2,
47.4% of the flow leaves the aquifer and enters
either the upper or lower region. In this example,
the ratio of the hydraulic conductivity is about as
large as it can be and still reasonably satisfy the
horizontal flow assumption. Two methods for
showing whether the horizontal flow assumption is
approximately satisfied use the hydraulic head and
flux profiles in the aquifer. This is discussed in
greater detail in conjunction with Figures 5 and 6.

Figure 3 shows contours of the hydraulic
head and normalized stream functions when the
hydraulic conductivity ratios for the upper and
lower layers are K, /K, = 0.1 and K;/K, = 0.01,
respectively. The flux crossing the inlet and outlet
boundary Q(0) = Q(L), is 0.144 m?/day and the
maximum values for the normalized stream
functions ¢, and ¥, are 0.30 and 0.03, respectively.
Comparing Figures 2 and 3 shows that reducing one
of the conductivity ratios reduces the overall flow
in the upper and lower regions (i.e., 33.1% vs.
47.4%) but increases the percentage of flow in the
aquitard with the larger conductivity ratio (i.e.,
30.1% vs. 23.7%) and decreases the flow in the
aquitard with the lower ratio (i.e., 3.0% vs. 23.7%)
compared to the case shown in Figure 2.

Shown in Figure 4 is an example where the
horizontal flow assumption is no longer valid. For
this example, the hydraulic conductivities for each
region were assumed to be equal and have a value
of 1.0 m/day, giving conductivity ratios of 1.0. The
flow across the aquifer inlet and outlet boundary
is Q(0) = Q(L) = 0.818 m?*/day, and the maximum
value for the normalized stream functions ¢, and
¥3 is 0.450. For this example, 90% of the flow
leaves the aquifer between the inlet and the point

x = L/2. Although most of the flow passes through
the upper and lower layers, there is still a large area
in the middle of the aquifer where the flow is
approximately horizontal. In particular, the flow

in the aquifer where 5 < x < 95 is approximately
horizontal since only 10% of the total flow will

pass out of the portion of the aquifer between

x =5 and x = L/2 and move through the upper

and lower regions. This tends to support one’s
intuition that, in general terms, for a flow system
with an inlet and outlet that is open over a small
area at the ends of the aquifer, only the region near
the inlet and outlet exhibits strongly two-dimen-
sional behavior. If the flow pattern near the inlet
and outlet is required, a solution which accounts
for the two-dimensional flow in this area should be
used. If, on the other hand, the region in the middle
part of the aquifer is of interest, a solution which
uses the horizontal flow assumption may, in general,
produce adequate results. It should be kept in mind,
however, that although the flow in the aquifer is
predominantly horizontal, there is a relatively large
change in flux with position near the inlet.

To demonstrate the validity of each of the
examples shown in Figures 2 through 4, the
hydraulic head and the flux as functions of position
in the middle aquifer were plotted in Figures 5 and
6. For perfectly horizontal flow [i.e.,

q:(x) = q2(x) = 0] the solution for the hydraulic
head in the middle aquifer is the straight line
H,(x) =5 - x/20 and the gradient, and hence the
flow rate, would be a constant throughout the
aquifer. It is apparent from Figure 5 that the
examples shown in Figures 2 and 3 (i.e., conduc-
tivity ratios of K, /K, = K;/K; = 0.1 and the ratios
K,/K, = 0.1 and K;/K, = 0.01) give almost the
same hydraulic head profile in the middle aquifer
as the perfectly horizontal (one-dimensional) case.
Comparison between the analytical solution con-

9.3

Z (m)
=
s
o
=
~
Y
s
]

8.3

2 50 100
X (m)

Fig. 4. Hydraulic head and stream functions when

K,/K; = K;3/K, = 1.0. The contour levels for the stream
function are: 0.1, 0.2, 0.3, and 0.4. The contour levels for
the head are given in the text.
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Fig. 5. Hydraulic head as a function of position in the
aquifer. The dotted, dashed, and solid lines indicate the
head profile for the examples shown in Figures 2, 3, and 4,
respectively.

tained herein and the “straight-line” solution gives
one means for determining the validity of the
horizontal flow assumption. From this comparison,
it appears that hydraulic conductivity ratios up to
and including about 0.1 are consistent with the
horizontal one-dimensional flow assumption. The
third example contained in Figure 4, on the other
hand, significantly violates the horizontal flow
assumption. Only in the region 5 < x < 95 m is the
hydraulic head profile approximately linear (but
with a different, i.e., lesser slope).

Shown in Figure 6 is the flow rate as a
function of position through the aquifer. For each
of the examples shown, there is a reduction in the
flow rate in the aquifer near the inlet and an
increase near the outlet point. Also, consistent

1.0 ———————————————

Q

1 N — . ]

50 100

X

Fig. 6. Flux profile as a function of position in the aquifer.
The dotted, dashed, and solid lines indicate the flux profile
for the examples shown in Figures 2, 3, and 4, respectively.
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with continuity requirements, the flow rate profile
is symmetric about the point x = L/2. The flow
rate profile also can be used to judge whether the
model assumptions have been violated. For the
examples shown in Figures 2 and 3, the reduction
in the flow rate with position near the inlet is
relatively small compared to Figure 4, again
supporting the conclusion that a hydraulic conduc-
tivity ratio of 1.0 significantly violates the
horizontal flow assumption. For the “straight-line”
solution, the flow rate as a function of position
would be Q(x) = 2aK,grad (h) = 0.1 m?/day and is
a constant.

As a final example, a comparison is made
between the analytical solution contained herein
and a saturated-unsaturated flow solution using the
finite-element method for a stratified aquifer with
a partially saturated upper region. The motivation
for making this comparison is to see if the analyt-
ical solution will yield reasonable results when
compared to the finite-element solution given the
assumptions that the flow in the middle region is
horizontal and that the unsaturated hydraulic
conductivity in the upper aquifer can be taken as
approximately equal to the saturated value. If the
errors associated with using the analytical solution
are small, then a savings in terms of computational
costs and man-hours needed to set up the finite-
element grid system would result by using the
analytical solution instead of the finite-element
solution.

Two macroscale laboratory aquifers, described
in greater detail by Beck et al. (1987), are 488 cm
in length, 122 c¢m in thickness, and 122 cm in
width with a 61-cm surface layer of Lincoln fine
sand, a 30.5-cm aquifer (middle layer) which con-
sists of Owl Creek sand, and a 30.5-cm aquiclude
(lower layer) consisting of Brick Plant soil. The
saturated hydraulic conductivity values for the
upper, middle, and lower layers are 0.2, 10.0, and
.0001 cm/hr, respectively. The moisture retention
data for the upper region which were used in the
finite-element solution, were determined in the
laboratory and fitted to the Clapp and Hornberger
(1978) rclationship using a nonlinear optimization
technique. A summary of the soil coefficients is
given in Table 1. The water table is located by the
line: 18 em-3 cm(x/L). The contour values for the
hydraulic head from the finite-element solution
and the analytical solution (assuming the conduc-
tivity in the upper region is a constant) are shown
in Figure 7. With the exception of the corner areas
in the upper layer, the results of the two methods
are almost the same and demonstrate the utility



Table 1. Summary of Soil and Clapp and Hornberger*
(1978) Coefficients for the Saturated and Unsaturated
Upper Layer (Lincoln Fine Sand) in Figures 7 and 8

Coefficient Mean value

B 455 (0.011)**
ho -41.65 (6.54)
b 171 (0.29)

*  Clapp and Hornberger (1978) relationships:

K(8) = Kg (80203

h(d) = ho(e/es)’b

(note: H=h +z)

where K, 5, hg, and b are the saturated hydraulic
conductivity, porosity, air entry pressure, and an
empirical constant, respectively.

**  Coefficient standard deviation resulting from nonlinear
optimization technique.

of the analytical solution in describing the flow
pattern in a stratified aquifer system even when
it is partially unsaturated.

For a comparison between the two methods,
values of the hydraulic head were calculated at the
four points marked in Figure 7. At the points
marked “1,” “2,” ““3,” and “‘4,” respectively, the
values of the hydraulic head which result from the
analytical solution are: 18.05, 18.01, 17.95, and
17.93 cm whereas from the numerical solution are:
18.07, 18.04, 17.98, and 17.96 cm. This demon-
strates that the rather large discrepancies between
contour lines in the corners of the graph are due to
small gradients in the hydraulic head.

The finite-element solution technique used
here also was used in the design of the macroscale
stratified aquifers by Beck et al. (1987) at a larger
cost. In terms of design, an identical macroscale
stratified aquifer system would have resulted if the

76 M ™ T T d T T 7
4

o

Z (cm)
)

17.75 16.75 16,75

~46 A . . . . .
] 244 488

X (cm)

Fig. 7. Comparison between the analytical solution (solid
line) and the finite-element solution (dashed line) when the
upper layer is partially saturated. The water table is
described by the line 18 em-3 cm x/L. See the text for a
discussion concerning the four points marked in this figure.
The contour levels are given in the text.

slightly more restrictive (in terms of assumptions)
analytical solution would have been available for
use.

Another advantage the analytical solution has
over many finite-element solutions is that the
stream lines can be calculated easily. Shown in
Figure 8 are the stream lines using equation (13)
along with the hydraulic head values from the
analytical solution. Figure 8 shows that 97% of the
flow remains in the middle aquifer, and thus the
horizontal flow assumptions are closely
approximated.

The finite-element program used by Beck et al.
(1987) does not provide the stream lines directly
and would require using the matrix of head values
and a finite-difference approach. Since large errors
would be introduced by generating the stream lines
in this manner, they are not included in Figure 8.

CONCLUSIONS

An analytical solution for the flow of water in
a saturated-stratified aquitard-aquifer-aquitard
system has been derived and demonstrated with
examples. The major assumptions used in develop-
ing this analytical solution include: each layer is
fully saturated and at steady-state, for each layer
the medium is homogeneous and isotropic (although
differences between layers are allowed), flow of
water in the aquifer is horizontal and one-dimen-
sional, and flow of water in the aquitards is two-
dimensional. In the examples contained herein, it
was found that the ratio of hydraulic conductivity
between layers (i.e., K,/K, and K;/K,) should be
less than or equal to 0.1 for the horizontal flow
assumption to be approximately valid. When the
ratio of hydraulic conductivities is larger, a
solution which allows two-dimensional flow in the
aquifer should be used.

76

17.75 16.75 15.75

Z (cm)
o

222296

2 244 488

X (em)

Fig. 8. Hydraulic head and stream function profiles from
the analytical solution. The contour levels for the stream
function are: 0.01, 0.02, and 0.03 in the upper layer and
are: 3X 1076, 6 X 10, and 9 X 107 for the lower layer.
The contour levels for the head are given in the text.
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A comparison was also made between the
results of the analytical solution and a finite-
element solution when the upper layer was both
saturated and unsaturated. The analytical solution
along with the assumption that the unsaturated
hydraulic conductivity was approximately equal to
the saturated value was found to produce approxi-
mately the same hydraulic head profile as the
finite-element solution with the exception of the
corners of the aquifer. In terms of designing a
macroscale stratified aquifer (see Beck et al., 1987)
identical results would have occurred regardless of
whether the analytical or finite-clement solution
was used.
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