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Introduction

In dealing with problems related to land-based
nuclear waste management, a number of analytical
and approximate solutions were developed to
quantify radionuclide transport through fractures
contained in the porous formation (e.g., Neretnieks,
1980; Rasmuson and Neretnieks, 1981; Tang et al.,
1981; Sudicky and Frind, 1982; Barker, 1982;
Hodgkinson and Lever, 1983; Rasmuson, 1984;
Neretnieks and Rasmuson, 1984; Chen, 1986). By
treating the radioactive decay constant as the
appropriate first-order rate constant, these solutions
also can be used to study injection problems of a
similar nature subject to first-order chemical or
biological reactions. In these works, the fracture is
idealized by a pair of parallel, smooth plates
separated by an aperture of constant thickness.
Using this macroscopic approach, Chen (1986)
gave solutions to different cases regarding the
injection of radioactive material into a fractured
formation. The planar fracture was assumed to
have a constant aperture thickness, 2b, and inter-
sect the well with a radiusr, (see Figure 1). Water
containing radioactive constituents was discharged
into the fracture through the well under a constant
flow rate of Q. The injected radionuclides moved
primarily through the fracture in a steady, radial
flow field where the velocity as a function of radial
distance, r, is described by

V(r)= A/r (1)

where A = Q/(4nb) as the advection parameter.
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Ground water was assumed to be immobile in
the underlying and overlying porous formations due
to their low permeabilities. However, the injected
radionuclides were able to move from the fracture
into the porous matrix by molecular diffusion (the
matrix diffusion) due to possible concentration
gradients across the interface between the fracture
and the porous matrix (i.e., at z = 0). Two models
(Models I and I1) were studied by Chen (1986).
Model I assumed advection and longitudinal dis-
persion as the transport mechanisms in the fracture,
while Model II considered only advection. Both
models included matrix diffusion. Solutions of
these two models are different under transient
conditions but converge to the same solution at
steady state for commonly occurring conditions.
Compared to the steady-state solutions of Model I,
the steady-state solutions of Model II are mathe-
matically simpler and thus are recommended for
use when dealing with steady-state conditions of
the stated problem. In addition to quantifying a
“worst case’’ scenario, the steady-state solutions
can be used to determine the maximum transport
distance of the injected radionuclides in the
fracture. For time-dependent conditions, however,
the transient solutions of Model I are suggested
because they are more generalized in the sense that
the longitudinal dispersion process in the fracture
is taken into account.

These transient and steady-state solutions
have potential usefulness for quantitative study of
problems where radioactive material is injected
into a fractured formation for disposal or for tracer
tests. They also can be employed to check the
accuracy of portions of pertinent three-dimensional
numerical codes; for axial symmetric systems the
radial dimension is a combination of the horizontal
x and y Cartesian dimension (i.e., r* = x? + y?),
and the matrix diffusion normal to the radial direc-
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Fig. 1. Schematic of radianuclide transport from an
injection well into a single, planar fracture situated in
porous formation,
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tion adds the third dimension, z. Consequently,
these solutions could be used to check two-dimen-
sional areal flow with matrix diffusions in the
vertical direction.

By making use of the Stehfest method
(Stehfest, 1970a, b), the transient solutions were
determined by numerically inverting the solutions
to Model I in the Laplace domain, which involve
the transcendental Airy functions. Calculation of
the transient solutions is not straightforward, and
the purpose of this paper is to document a con-
tained FORTRAN program, which computes the
Stehfest inversion, the Airy functions, and gives
the concentration distributions in the fracture as
well as in the porous matrix for both transient and
steady-state cases. A formula determining the
maximum transport distance is given here.

Mathematical Model and Solutions

The mathematical model and its solutions are
briefly discussed here. Detailed discussions of
development of the model and derivation of the
solutions are provided in Chen (1986).

The dispersion theory for solute transport in
porous media is adopted, and the longitudinal
dispersivity in the fracture is assumed to be
constant. Hence, the longitudinal dispersion
coefficient for the radial flow field neglecting
molecular diffusion can be written as

Dy =,V (2)

where V is the steady-state, radial ground-water
velocity described by (1); and «, is the constant
longitudinal dispersivity.

The governing equations of the model can be
formulated as

32C, aC,
Dm h >\R2C2 = R2 D— (3)
az? at
OélA 82C1 A E)Cl
— - — +

r or? r or

nsz 6C2 aCl
21 _\R,C, =R, = 4
T 5, G =Ry — (4)

2=

where X\ is the decay coefficient for the radio-
nuclides (or the first-order rate constant for
chemical or biological transformation);

C, and C; are concentrations in the fracture

and in the porous matrix, respectively;

Dm, n;, and R, are, respectively, the effective
molecular diffusion coefficient, the porosity, and
the retardation factor for the linear-isotherm
adsorption in the porous matrix; and
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a;, b, and R, are, respectively, the dispersivity, half
aperture thickness, and retardation factor in the
fracture.

The initial condition for (3) and (4) is

C,(r,0)=C,(z,0)=0 (5)

which states that no contaminants exist in the
system prior to injection.

The boundary condition at the interface of
the fracture and the porous matrix is given by the
continuity of concentrations as

Ci(r,0) = Cy(z,1); z=0 (6)

asr — o and z - oo, a bounded condition is
prescribed for C, and C, as

C,(e,t) = C,(o,t) is bounded; 1% +2z%* > (7)

Two different boundary conditions for decay and
nondecay sources are considered at the well bore.
The decay boundary condition is

At

Ciro, 1) = Coe™M/Cy = ¢ (8)

which may be relevant to injecting a radioactive
substance with a short half-life. Due to the rapid
decay, the concentration of the substance in the
well bore cannot remain at a constant level but
decreases with time following the exponential law
as stated in (8).

The nondecay boundary condition, however,
may be used if the concentrations at the injection
well remain at a constant level because of the long
half-life of the injected radioactive materials; that
is,

Ciro, 1) =Co/Cy =1 9

In fact, if At < 0.01, the boundary conditions (8)
and (9) are approximately equivalent since (8)
yields a source concentration which like (9) is
approximately equal to unity. Therefore, use of
the decay or nondecay condition at the injection
well does not cause significant difference in the
calculated results provided At < 0.01.

Transient Solutions by Numerical Inversion
Analytical solutions to (3) and (4) subject to
(5) through (8) or (9) can be determined by the
Laplace transform technique. In appropriate
dimensionless forms, the solutions for the decay
boundary condition (8) in the Laplace domain is

1 Ai A
Gy (p,p) = exp [(p — po)/2] -iﬁl—y] (10a)
p+a Ai[8%y,]
Gy (p,p) =G, * exp[-£(p + o, )] (10b)



where G, and G, denote the concentration distribu-
tions in the fracture; and within the porous matrix
in the Laplace domain, respectively, p is the Laplace
transform parameter of the dimensionless time 7
defined by

T = At/R | a/?

and the symbol Ai(x) represents the Airy function.
The dimensionless radial distance p, the dimension-
less vertical distance ¢, and other dimensionless
parameters are defined in the Nomenclature.

The analytical Laplace inversion of (10) gives
closed form solutions of C; and C, for the problem.
As shown by Chen (1986), however, approximate
solutions determined by numerically inverting (10)
with the Stehfest method (Stehfest, 1970a, b) yield
accurate results for practical purposes. Specifically,
C, and C, for the decay boundary condition are
obtained by numerically inverting G, and G, given
in (10) with the following finite series of N terms

N
Ci(p,7)=p El WnG;(p,np); p=1In(2)/7 (11a)
n=

N
Cy(p,m)=p El Wn G, (p,np); p=1In(2)/7 (11b)
ne

During the inversion calculation, p is inversely
related to 7, and N must be an even integer. The
weighting factors, Wy, are determined with the
rational function given by Stehfest (1970a, b).
These weighting factors are only dependent on the
value of N chosen; that is, they need to be deter-
mined only once for any numerical inversions so
long as N is fixed. In the computer examples
provided in the Appendix, 16 weighting factors
(i.e., N = 16) are given. It was found that 16 weight-
ing factors provided sufficiently accurate results on
an IBM-AT compatible microcomputer or on a
DEC-20 main frame. Double-precision calculations
are suggested when using the program. It should be
noted that the arguments in the Airy functions are
also dependent on p and hence on N and 7 (see
Nomenclature).

The Airy functions in (10) are calculated
using appropriate formulae given by Abramowitz
and Stegun (1970). Arguments of the Airy
functions in (10) are always positive. The first 16
terms of the power series given by Abramowitz and
Stegun (1970, equation 10.4.2) are used to evaluate
Ai(x) when 0 < x < 3. For the condition, 3<x< 5,
Ai(x) is determined using a two-step procedure.
Firstly, the modified Bessel function of the second
kind of order Y, Ki, (x), is calculated by the
integral formula of equation 9.6.24 in Abramowitz
and Stegun (1970). Secondly, the calculated Kl/3 (x)

is converted to Ai(x) using the mathematical
identity of equation 10.4.14 in Abramowitz and
Stegun (1970). This method of determining Ai(x)
for 3 < x < 5 increases the computational stability
of the algorithm. For x > 5, the first 14 terms of
the asymptotic expansion given by equation 10.4.59
in Abramowitz and Stegun (1970) are employed
for evaluating Ai(x). If a computer with sufficient
precision is available, Ai(x) can be calculated by
using the power series in the range 0 < x < 5, and
by the asymptotic expansion for x > 5 as mentioned
above. In this event, the two-step computation for
3 < x < 5 isnotrequired. When x > 5, Ai(x)
becomes small and can cause exponential underflow
problems. Therefore, Ai(x) is scaled by a multiply-
ing facror, x/a exp [(%4) x:‘/z] . To recover the actual
value for the Airy function during the calculations,
the result is multiplied by x~ % exp [~ (%) x 2].
This approach for evaluating Ai(x) was suggested
by Hsieh (1986).
In a similar manner, C; for the nondecay
boundary condition can be determined by replacing
Ailg%y)
G, (p,p) = (A/p)exp [(p = po)/2] ———— (12)
A7 yo]

in (11a), and C, can be obtained by introducing
(12) to (10b) and (11Db).

The effect of the nondecay boundary condi-
tion is to replace the term 1/(p + ;) in (10) by the
term 1/p. The calculation for the nondecay case
follows identical procedures as the decay case.
Hence, determination of concentration distributions
for both the decay and nondecay boundary condi-
tions requires only a slightly different calculation
in the program.

Exact Steady-State Solution

Under steady-state conditions (i.e., injection
time approaches infinity), the decay boundary
condition yields a zero source concentration at the
injection well, leading to a trivial solution of zero
concentration everywhere in the system. However,
nontrivial steady-state solutions exist for A > 0 and
a nondecay boundary condition; that is,

Ci=exp[(-E;x~ E, )T (13a)

C, = C, exp [~z (R, \/Dpy)*] (13b)

The longitudinal dispersivity is absent in (13)
because the longitudinal dispersion in the fracture
was neglected. Although Chen (1986) noted that
longitudinal dispersion in the fracture could be
neglected for steady-state conditions without intro-
ducing noticeable error based on one problem, we
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have verified that this conclusion is true for general
conditions unless the parameter « is greater than
approximately 10, which is unreasonably high and
would rarely occur for practical problems. There-
fore, (13) provides a useful steady-state solution
for the stated problem.

The ultimate extent with which the concentra-
tion front can move in the fracture can be approxi-
mated with (13a). If the concentration front is
taken as the location where x percent of the injected
concentration takes place, then this ultimate moving
distance is approximately equal to

21n(1 Y2
Iy = —————n< x) (14)

E, N+ E,\*

which is derived from (13a) by setting C, to x and
the well radius is neglected. For example, if the
frontal concentration is taken as 0.05, then the
assoclated ultimate moving distance is

Io.05 :25[E:1>\"“E;z)\l/z]_l/2 (15)

Examples

To illustrate the solutions contained herein,
several hypothetical examples were created. To
provide for the implementation of the computer
program by future users, the data used to create
the examples are reported in Appendix 2. To use
the program, which is listed in Appendix 1, aquifer
and chemical properties are required. The properties
used for the following example are: half aperture
thickness (b), well radius (ry), flow rate into the
fracture (Q), dispersivity (a,), effective diffusion
coefficient (Dp,), and matrix porosity (n,),
respectively; 5.0 X 107 m, 0.1 m, 3.65 m¥day,

0.1 m, 1.0 X 10 m%*day, and 0.01 m¥m?3. Other
required parameters include the decay coefficient
and retardation constant, which are 0.01 day™f
and 1.0, respectively. For each calculation, 16
Stehfest weighting coefficients and double
precision were used.

Figure 2 shows the concentration distribution
as a function of radial distance at several times and
for two different boundary conditions at the well.
The solid and dotted lines indicate, respectively,
the concentration profiles based on the nondecay
and decay boundary conditions. For the injection
time equal to 0.01 day, the solutions determined
by the two different boundary conditions are
practically the same (see Figure 2) because the
relationship At < 0.01 is satisfied. Under steady-
state conditions, the solid line calculated by (12)
with a large value of time is almost identical as the
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Fig. 2. Concentration with respect to time and radial
distance in the fracture. The solid and dotted lines indicate
the results from the nondecay and decay cases, respectively.
The model coefficients are given in Appendix 2.

dots which resulted from the zero-dispersivity
approximation, equation (13). This coincidence
indicates that longitudinal dispersion in the fracture
is not important for steady-state conditions. The
ultimate moving distance, rq s, determined with
equation (15), is about 238 m, which is found in
Figure 2 by graphic interpolation.

Figure 3 is a diagram of the concentration
distributions in the porous matrix for the example
contained in Figure 2. In Figure 3a, the concentra-
tion profiles of C, at a radial distance of 1.0, 5.0,
and 10.0 m and a time of 0.01 day is shown. In
Figure 2b, the concentration profiles are for
steady-state and radial distances of 1.0, 100.0, and
150.0 m. The dots indicate the results from the
approximate solution. As was shown for the
fracture, the zero-dispersivity approximation
produces almost the same results as the more
rigorous exact solution for this example.

Figure 4 contains a transient and steady-state
contour diagram of the concentration in the
fracture and porous matrix. For clarity, the
fracture has been enlarged. The dotted line in
Figure 4a indicates the position of the well bore. In
Figure 4b, again it can be shown that equation (15)
is a valid approximation for the ultimate moving
distance, rg 5.

Nomenclature
Dimensional Parameters

A advection parameter equal to Q/(4r7b), m%s.
b half fracture aperture, m.
Co concentration at the well bore, kg/m?.

Dy effective diffusion coefficient of porous
matrix, m%s.
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Fig. 3. Concentration in the porous media for times 0.01 d
{a) and at steady-state (b). The dots in (b) indicate the
results from equation (13). The model coefficients are given
in Appendix 2.

D, longitudinal dispersion coefficient, m¥s.
E, R,/A, s/m?.
E, n, (R,Dp)?%/(bA), s”2/m?.

Q constant injection rate, m?¥s.

r radial distance, m.

I'o well radius, m.

T (r? —r2)/2, m?.

t time, s.

A% ground water in fracture defined by (1), m/s.
z vertical distance in the porous matrix, m.

o dispersivity of fracture, m.

A radioactive decay constant or first-order

rate constant for chemical or biological
reactions, s’'.

Dimensionless Parameters
C,,C, normalized concentration in fracture and in
porous matrix, respectively.

n, porosity of porous matrix.

R,,R, retardation factors in fracture and in
porous matrix.

p Laplace transform parameter.
y = p + 1/(48).
Yo = po + 1(48).

@ = (nya/b)(R,Dpy /R,A)

a; = RjyhaP/A.

g = p+a1+oz(p+o<1)1/2.

£ (z/a, ) (R,A/R,Dy)”, dimensionless vertical
distance.

T At/(R, %), dimensionless time.

0 r/a,, dimensionless radial distance.

20 ro/a;, dimensionless well radius.

Function

Ai(x) Airy function.

Disclaimer

Although a portion of the research described
in this article has been funded wholly or in part by
the United States Environmental Protection
Agency, it has not been subjected to the Agency'’s
peer and administrative review and therefore may
not necessarily reflect the views of the Agency, and
no official endorsement should be inferred.

2.008 —
t = 0.0t d]

0.004

Z (m)

——r
t = steady |

4
4
4

Z (m)

R (m)

Fig. 4. Contour diagram of the concentration with respect
to position and time. For t = 0.01 d (a), the contour levels
are: 0.95, 0.9, 0.8, ..., 0.1. For t = steady-state (b), the
contour levels are: 0.95,0.9,0.8,..., 0.1, and 0.05. The
dotted line in (a) indicates the position of the well bore.
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Appendix 1. Program Source Code

w *n COMMON IN,IT,10,IL
DATA MES1(1)/'Vertical concentrations will not be calculated'/s
THIS PROGRAM COMPUTES THE LAPLACE INVERSION OF THE RADIAL #,MES1(2)/'Vertical concentrations will be calculated'/
DISPERSION EQUATION FOR VELOCITY DEPENDENT FLOW AND RADIOACTIVE #,MES2(1}/'A decay boundary condition exists at the wetl'/
DECAY GIVEN BY CHEN(1986) USING THE LAPLACE INVERTION METHOD OF #,MES2(2)/'A constant boundary condition exists at the well'/
STEHFEST{1970) DATA INN,100,177/1,2,5/,1A/30/,1B/15/
o
www ww [ read steering parameters -----
IT=177
INPUT INFORMAT ION: WRITE(CIT,900)

READ(IT,*) IN
IFCIN.EQ.0) CALL VT100

input parameters can be provided to the program from either IFCIN.EQ.1) CALL VT52
a disk file or the keyboard. In either case, the parameters c
that must be supplied are: CALL VTPOSI
WRITECIT,*)! GIVE INPUT DEVICE NUMBER (1=dsk, S=tty) '
INTERACTIVE INPUT (for opening files) READ(IT,*) IN
IFCIN.EQ.INN) THEN
CALL VTPOSI
IN - Input file number. IN=1 for disk, IN=5 for WRITE(IT,*)* GIVE INPUT FILE NAME'
keyboard. READ(IT,'(A)') FILE
OPEN(UNIT=IN,FILE=FILE,STATUS='0LD"' ,MODE='READ")
FILE - IF IN=1, then give the input file name. ELSE
ENDIF
c
10 - Output unit number. 10=2 for disk, 10=5 for CALL VTPOSI
terminal, 10=6 for printer. WRITE(IT,*)' GIVE OUTPUT DEVICE NUMBER (2=dsk, S=tty, é=(p)'
READ(IT,™) IO
FILE - IF 10=2, then give the output fite name. 1L=55

IF¢10.EQ.5) [L=20
TF(10.EQ.100) THEN
CALL VTPOSI
MODEL INPUT DATA (either from a disk file or interactively) WRITE(IT,*)® GIVE OUTPUT FILE NAME'
z===z READ(IT,'(A)') FILE
OPENCUNIT=10,FILE=FILE,STATUS="NEW')

OO0 NONNNONO000000A0OD0N0NO0O0CO0000N000

RECORD 1: (free format) ELSE
ENDIF
TITLE(3) - Three lines of title or problem description. c
c eee- read in input parameters of the fracture -----
IBC - Steering parameter for the boundary condition at {F(IN.EQ.1) THEN
the well. [f IBC=0; then a decay boundary. READCIN, '(A)') (TITLE(I),1=1,3)
c If IBC=1; then a non-decay boundary. READ(IN,*) 18C
C READ(IN,*) N,R1,R2,D,B,N2,DM2,LAM,Q
o N - Number of Stehfest weighting coefficients. For READ(IN,*) NR,RO,R,OR
C 1BM-AT compatible computers use between 10 to 16. READ(IN,*) NT,(T(I),1=1,NT)
C READ(IN, ™) NZ,02
c R1 - Retardation coefficient for the fracture surface. ELSE
C C
c R2 - Retardation coefficient for the porous matrix. o interactive input option -----
c CALL INTRAC(TITLE, 1BC,N,R1,R2,D,B,N2,DM2,LAM,Q,NR,R0,R DR,
c 0 - Dispersivity of the fracture. #NZ ,DZ NT,T)
C ENDIF
c B - Fracture aperature thickness. C
c [ write out input parameters -----
C N2 - Porosity of the porous matrix. 1F2ZN=0
c 1F(NZ.GT.0) [FZN=1
o Dm2 - Effective diffusion coefficient for the porous IF(10.EQ.1T) CALL VTPOS1
c matrix, WRITE(10,905)
C WRITE(IO,910) (TITLE(D),I=1,3)
c LAM - Radioactive decay coefficient. WRITE(10,915)
c WRITE(10,920) MEST(IFZN+1),MES2(IBC+1)
C Q - Flow into the fracture, IF(D.NE.0.0DO) WRITE(10,925) N
C 1F(D.EQ.0.0D0) WRITE(I0,930)
o TFCI0.EQ.IT) CALL VIWALT
€ RECORD 2: WRITE(10,935) 0,R1,8,0M2,R2, N2, LAM,Q
c IFCI0.EQ.IT) CALL VTWAIY
c NR - Number of radial coordinates where a concentration
C is to be calculated. C eee-- go to appropriate analytical solution -----
o S model1 if D » !, otherwise model2 -----
c Ro - The radius of the wellbore. IF(D.NE.0.0D0) CALL MODEL1(1A,18B,1BC,N,R1,R2,0,B,N2,DM2,LAM,Q
c ) ) ) # ,NR,RO,R,DR,NZ,DZ,NT,T,V,G,H,XR,AIO,20)
C R - The radial distance where the first concentration 1F(D.EQ.0.000) CALL MODEL2(1B,1BC,R1,R2,B,N2,0M2,LAM,Q,NR,RO,R
C is to be calculated. # ,DR,NZ,DZ NT,T)
C c
C OR - The distance between consecutive radial distances. C =ese- format statements -----
c A concentration will be determined at R + (i-1)DR, 900 FORHAT(36(/),‘ GIVE THE TERMINAL TYPE:',//,5X,'0 = VT100',/,
[ for i=1,2,3,... NR. # 5X,*1 = VT52!,150,!'==> ' $)
c 905 FORMAT(/ 1X 78(1H") /. 'IX Px JTEX, t*)
C 910 FORHAT(‘I)( Ve JIXA, 3 *1)
C  RECORD 3: 915 FORMAT(1X, '*¢ 76)( £ / 1X,78(14%))
C . 920 FORHAT(/// 1X 'PROBLEM SPECIFICATIONS',/,1X,22(1H=),//,1X,
C NT - Number of times the concentration is to be calculated. #ALé,/,1X,A48)
C X 925 FORMAT(1X,12,' Stehfest weighting factors will be used to invert t
C T(NT) - The NT values of time. The maximum size for this #he Laplace transform')
c array is 10. 930 FORMAT(1X, 'The dispersivity of the fracture is zero. Will use the
C # approximate solution')
¢ 935 FORMAT(///1X,'INPUT PARAMETERS'/,1X,16(1H=),//,
C  RECORD &: #1X, 'Dispersivity of the fracture [Ll.......ovvnnnnat, 10(1H.)
¢ . #, 1PE13.6 e
z NZ - Number of vertical coordinates (in the porous matrix) #1)( 'Retardation coefficient for fracture walls (01',10(1H.)
C where a concentration is to be calculated. Note: the #, 1PE13. 6,/,
C total number of concentrations calculated will be: ﬁ‘IX,'Half width of fracture aperature (L)..........',10(1H.)
c NR*NZ*NT. #,1PE13.6,/,
c #‘IX 'D1ffu510n coefficient of porous matrix (L*L/T1',10(1H.)
c D2 - The distance between consecutive vertical distances. #, 1PE13.6
[+ #1)( 'Retardatior\ coefficient for porous matrix (01.',10(1H.)
Crunw #,1PE13.6,/,
C #1X, 'Porosity of the porous matrix (0).............', 10(1H.)
C  IMPORTANT VARIABLES ¥, 1PE13.6,/,
[« #1X, '‘Radioactive decay constant [1/T)............. 100D
[+ RHOO - Dimensionless well radius #,1PE13.6,/,
C DRHO - Incremental dimensionless radial distance #1X, ‘Constant injection rate [L*L*(/T1......... eeeo ', 10(THY)
c RHO - Dimensioniess radius #,1PE13.6)
[ DX1 - Incremental dimensionless vertical distance END
[ X1 - Dimensioniess vertical distance [o4
[« TAU - Dimensioniess time [o boiahododbbd WEREEAWAARE
c A - Advection parameter c
[ ALF1 - Parameter relating to the radiocactive decay c SUBROUTINE MODEL1 -- CALCULATES THE LAPLACE INVERSION SOLUTION
[of ALF - Parameter relating to the diffusive {eakage [ OF Chen (1985) WHEN THE DISPERSIVITY [S
C c GREATER THAN ZERO.
¢ nawn bbbl b . c
IMPLICIT DOUBLE PRECISION (A-H,0-Z ¢
DOUBLE PRECISION LAM N2,7(15), V(30) G(30),H(15),XR(30) SUBROUTINE MODELI(IA,!1B,]BC,N,R1 RZ,D,B,NZ,DMZ,LAH,Q,NR,RO
¥ ,A10¢30),20(30) # ,R,DR,NZ,DZ,NT,T,V,G,H,XR,AIC,20)
CHARACTER FILE*20,TITLE(3)*70,MES1(2)*46,MES2(2)*48 INPLICIT DOUBLE PRECISION (A-K,0-2)
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DOUBLE PRECISION LAM, N2,V{IA),XR(IA),T(1B),AI0CIA),20(¢1A),G(IA),

#N(1B)
COMMON IN,1T,10,IL
COMMON /ARGU/ A13,ALF,BETA,BETA3

----- calculate the problem constants -----

RHOO = RO/D

DRHO = DR/D

RHOI = R/D

Pl = 2.0DO*DATAN(1.0+30)

A = Q/(4.000*P1*B)

ALF = N2*D*DSQRT(R2*DM2/(R1*A))/B
ALF1 = R1*LAM*D*D/A

DX! = DZ*DSQRT(R2*A/(R1*DM2))/D

A13=1.D0/3.00
A23=2,000/3.000
Aln2=0L0G(2.00)

----- print out calculated parameters -----
WRITE(10,900) A,RHCO,DRHO,ALF,ALF1
TF(NZ.GT.0) WRITE(10,905) DXI

----- determine the Stehfest weighting coefficients

IF(T(1).LT.0.000.AND.NT.EQ. 1) GOTO 1
CALL LINVCIA,IB,N,V,G,H)
1F(10.EQ.IT) CALL VIWAIT
WRITE(10,910)

00 10 1=1,N/2

1= N2+ 1

WRITE(10,915) 1,VCD),11,V(ID)
CONTINUE

CALL VTWAIT

~~~~~ calculate a concentration profile for each time

1F(10.EQ.1T) CALL VTPOS]
WRITE(]0,920)
IF(I10.EQ.IT) CALL VTWAIT

----- new time -----
DO 20 K=1,NT

TAU = A*T(K)/(R1*D*D)
RHO = RHO1

IF(10.EQ.1T) CALL VTPOS1
IF(T(K).LT.0.000) WRITE(10,925)
TF(T(K).GE.0.0D0) WRITE(10,930) T(X),TAU
WRITE(10,935)

----- determine Ai0 and 20 (only once) -----
TF(T(K).LT.0.000) THEN

IFCIBC,EQ.0) WRITE(5,940)

[F(IBC.EQ.0) RETURN

TF(LAM.EQ.0.0D0) WRITE(IO, 945)
IF(LAM.EQ.0.0D0) GOTO 20

.- find values for steady state case ----
Y0 = ARG(ALF1,RHOC)

20(1) = A23*(Y0)**1.500

10PT=1

1F(Y0.LT.3.000) 10PT=-

IF(Y0.GE.5.000) 10PT= O

A10C1) = AI(YO,IOPT)

ELSE

Sem-- find values for time-dependent case --
YMN = ARG(DBLE(FLOAT(N))*ALn2/TAU+ALF1,RHOO)
YMX = ARG(ALn2/TAU+ALF1,RHOC)

10PT=1

[FCYMX.LT.3.000) IOPT=-1

[F(YMN.GT.5.000) 10PT= O

00 25 L=1,N
PA1=0BLE(FLOAT(L))*ALn2/TAU+ALF1
Y0 = ARG(PA1,RHOO)

Z0¢L) = A23*Y0%*1,500

AIO(L)= AI(YO,IOPT)

CONTINUE

ENOIF

----- calculate the concentrations in the fracture

DO 30 IR=1,NR
DD=0.5D0%(RHO-RHOO)
XP=0.00
1F(T(K).LT.0.000) THEN

m-e-- calculate the steady-state values ----
Y = ARG(ALF1,RHO)

IF(Y.LT.5.00) THEN

Z = A23*(Y)**1.500
C1=DEXP(DD+Z0(1)-Z)*AL(Y,1)*(YQ/Y)**0.25D0/A
ELSE

DXP=(Y0/Y)**.25D0

XP = A23*(Y0**1.5D00-Y**1,500)
C1=DXP*DEXP(DD+XP)

ENDIF

ELSE

.-e-- calculate the time-dependent values --
= ARG(DBLE(FLOAT(N))*ALn2/TAU+ALF1,RHO)

YMX = ARG(ALN2/TAU+ALF1,RKQ)

1oPT=1

TF(YMX.LT.3.000) 10PT=-1

IF(YMN.GT.5.000) foPT= 0O

----- Stehfest numerical integration method
D0 35 L=1,N

PA1 = DBLE(FLOAT(L))*Atn2/TAU+ALF1

Y = ARG(PA1,RHO)

Z = A23*Y**1,5D0

FACT = DEXP(DD+ZO(L)-Z)*(20(L)/2)**.25

----- if 18C=1, C=1.0 at the well bore -----
IF(1BC.EQ.1) PAI=PA1-ALF1

ALFN = AI(Y,I0PT)
XREL)=V(L)Y*(CATFN*FACT)/(AIO(L)*PAY))

XP = XP + XR(L)

35 CONTINUE

10¢1)

C1=xP*ALn2/TAU
ENDIF

©

[ print out result -----
R = D*™RHO
LO=L0+1
[F(C1.L7.0.0D0) C1=0.000
WRITE(10,950) LO,R,0.000,C1
IF(LO.EQ.NR .AND. NZ.EQ.0) GOTO 30
IFCFLOAT(LO/IL) .EQ.FLOAT(LO)/FLOATCIL)) CALL VTWAIT
TF(FLOAT(LO/IL).EQ.FLOAT(LO)/FLOAT(IL)) WRITE(10,935)

o

----- calcutate concentration in porous matrix -----

00 40 12=1,NZ
1F(T(K).LT.0.000) THEN

----- calculate steady state concentraton -----
C2=C1*DEXP(-XI*SQRT(ALF1))

2 = D*X1/DSQRT(R2*A/(R1*DM2)}

ELSE

oo

----- calculate time-dependent concentration -----
ZP=0.000
DO 45 L=1,K
PA1 = L*ALN2/TAU+ALF1
22 = DEXP(-XI*DSQRT(PA1))
P = ZP + Z2*XR(L)
45 CONTINUE
C2=ZP*ALN2/TAU
ENDIF

€ eeee- print out results -----
2 = D*X1/DSQART(R2*A/(R1*DM2))
LO=LO+1
IF(C2.17.0.000) C2=0.000
WRITE(10,950) LO,R,2,C2
[F({LO.EQ.NR*NZ) GOTO 40
TF(FLOAT(LO/IL).EQ.FLOAT(LO)/FLOAT(IL)) CALL VTWAIT
[F(FLOAT(LO/IL) .EQ.FLOATCLO)/FLOAT(IL)) WRITE(10,935)
40 XI =x1+DXI
30 RHO=RHO+DRHO
20 IF(K.NE.NT) CALL VTWAIT

----- format statements -----
FORMAY(///1X, *CALCULATED PARAMETERS'/1X,22(1H=)//

#1X, 'Advection parameter (A).....civvereannenecnnnn 100,
#1PE13.6,/,
#1X,'Dimensionless radius of the well (RHOO)....... 'LA0(HL)
#,1PE13.6,/,
#1X,'Dimensionless distance between radii (DRHO)...',10(1H.)
#,1PE13.6,/,
#1X,'Ratio of diffusive loss to injection (ALPHA)..',10(1H.)
#,1PE13.6,/,
#1X,'Dimensionless radioactive decay constant (ALPHA1)',7(1H.)
#,1PE13.6)
905 FORMAT(1X,'Dimensionless vertical spacing (DXI).......... '

# ,10(1H.),1PE13.6)
910 FORMAT(///1X,*STEHFEST WEIGHTING FACTORS'/1X,27(1H=)//

HSX, 10, 12X, VCI)T 27X, VTT 1IN, VLD Y)Y
915 FORMAT(1X,15,1PE20.7,20X,15,1PE20.7)
920 FORMAT (16X, ‘CONCENTRATION DISTRIBUTION®

#,/,16X,26(14=),//)
925 FORMAT(SX,'Time = Steady State',/)
930 FORMAT(5X,'Time = ' 1PE15.5,10X,'Tau = ', 1PE15.5,/)
935 FORMAT(SX, 'I', 14X, 'R',16X,'2' 15X, 'C/Co")
940 FORMAT{SX,'ERROR: IBC must = 1 for a steady state solution'}
945 FORMAT(S5X,'ERROR: Lambda cannct be zero for a steady State

# solution.',/, 12X, 'The concentration is 1.0 for X < infinity',/)
950 FORMAT(1X,15,5X,F12.3,5(5X,F12.4))

RETURN

END

90
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SUBROUTINE NAME: MODEL2 -- THIS PROGRAM CALCULATES THE SOLUTION
OF Chen (1986) WHEN THE DISPERSIVITY
IS ZERO.

SUBROUTINE MODEL2(18,1BC,R1,R2,B,N2,0M2,LAM,Q,NR,RO, R
# ,OR NZ,DZNT,T)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION LAM,N2

DIMENSION T(18)

COMMON IN,IT,10,1L

OO0

o0

----- calculate problem constants -----
= 2.0D0*DATAN(1.D+30)
= Q/(4.0D0*PI*B)

E1 = R1/A
= N2*DSQRT(R2*DM2)/A/B

Rl = R
WRITE(10,900) AE1,E2
CALL VIWAIT

1£(10.EQ.1T) CALL VTPOSI
WRITE(10,905)
1E(10.EQ.1T) CALL VTWAIT

<o

----- calculate concentration for each time -----
DO 10 K=1,NT

[F(10.EQ.1T) CALL VTPOS1

TF(T(K).LT.0.000) WRITE(10,910Q)

[F(T(K).GE.0.000) WRITE(1D,915) T(K)
WRITE(I0,920)

ao

----- calculate the concentration in the fracture -----
DO

o

0 15 IR=1,NR
R=R¥R/2.-RO*RO/2.
=0.000

F

T(X).LT.0.000) THEN



c - steady-state solution -----
ARGY = -E1*LAM*RR - E2*DSORT(LAM)*RR
[F(IBC.EQ.Q.AND.LAM.NE.0.0D0) C1 = 0.000
IF(IBC.NE.Q.AND.LAM .NE.0.0DO) C1=DEXP(ARG1)
IF(IBC.NE.G.AND.LAM,EQ.0.0D0) C1=1.0D0
ELSE

----- time-dependent solution -----
T1=T(K)-E1*RR

1F(T1.LE.0.0) GOTC 25
ARG1=E2*RR/DSQRT(T1)/2.0
ARG2=DSQRT(LAM®*T1)
EXP1=E2*RR*DSQRT(LAM)

EXP2=E 1*RR*LAM

oo

ao

----- calcutation for a decay boundary condition -----
[F(IBC.EQ.1) GOTO 20

C1=0EXF(-LAM*T(X),ARG1)

GOTO 30

oo

----- calculation for a non-decay boundary condition -----
20 C1=0.SDO*(DEXF(-EXP1-EXP2,ARG1-ARG2)
# +DEXF(EXP1-EXP2,ARG1+ARG2))
GOTO 30
25 €1=0.0
30 CONTINUE
ENDILF

oo

----- print out results -----

LO=L0+1

WRITE(10,925) LO,R,Z,C1

IF(LO.EQ.NR .AND. NZ.EQ.0) GOTO 35
IF(FLOAT(LO/IL).EQ.FLOAT(LO)}/FLOAT{IL)) CALL VTWAIT
TF(FLOAT(LO/IL).EQ.FLOAT(LO)/FLOAT{IL)) WRITE(1C,920)

oo

----- calculate concentration in porous media -----
35 2=02

DO 40 N=1,N2

TF{T(K}.LT.0.000) THEN

[2 ¥z}

----- steady-state solution (only non-decay boundary allowed) -----
IF(IBC.NE.0) C2 = DEXP(ARG1 - Z*DSQRT(R2*LAM/OM2))

ELSE

----- time-dependent solution -----
IF (T1.LE.0.0) GOTO 50
22=2*DSORT(R2/DM2)

ARG1= (EZ"RR*IZ)/DSORT(TU/Z 0
IF(IBC.EQ.1) GOTO 45

y boundary condition -----
c2= OEXF( LAN'T(K) ARGi)
GOTO 55

oo

oo

----- non-decay boundary condition -----
45 €2=0.5D0*(DEXF{-EXP1-EXP2-DSQRT(LAM)*ZZ, ARG1-ARG2)
# +DEXF(EXP1-EXP2-DSQRT(LAM)*ZZ,ARG1+ARG2))
GOTO 55
50 €2=0.0
55 CONTINUE

oo

----- print out results -----
LO=LO+1
WRITE(10,925) LO,R,Z,C2
1F(LO.EQ.NR*NZ) GOTO 40
TF(FLOAT(LO/IL).EQ.FLOAT(LO)/FLOAT(IL)) CALL VTWAIT
LF(FLOAT(LO/IL).EQ.FLOAT(LO)/FLOAT(IL)) WRITE(10,5920)
40 2=2+D2
15 R=R+DR
10 IF(K.NE.NT} CALL VTWAIT
RETURN

[s¥s}

----- format statements -----
900 FORMAT(///1X,'CALCULATED PARAMETERS'/1X,22(1H=)//
#1X, 'Advection parameter (A).....cveevreeeennnonnnn *L10CKD),
#1PE13.6,/,

#1X,'Ratio of retardation in fracture to VA" (E1)..',10(1H.)
#,1PE13.6,/,
BN, PFACtOr B2uu it eiininernroronnasocannonannnans VL10CH)

#,1PE13.6)
905 FORMAT(16X, ' CONCENTRATION OISTRIBUTION'
#,/,16%,26(1H=),//)
910 FORMAT(SX,'Time = Steady State!,/)
915 FORMAT(5X,'Time = ' 1PE15.5,/)
920 FORMAT(5X,'I', 14X, 'R' , 16X, 'Z' 15X, 'C/Co*)
925 FORMAT(1X,15, SX F12 3 5(5X F12 4))
END

FUNCTION ARG -- CALCULATES THE ARGUMENT FOR THE AIRY FUNCTION

DOUBLE PRECISION FUNCTION ARG(P,R)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /ARGU/ A13,ALF,BETA,BETA3

[3XaXzXsXsXs}

BETA = P+ALF*DSQRT(P)
BETA3 = BETA**A13

ARG = BETA3*(R + 0.25D0/BETA)
RETURN

END

SUBROUTINE DEXF -- EVALUATES EXP(A)ERFC(B) IN DOUBLE PRECISION

ononon

DOUBLE PRECISION FUNCTION DEXF(A,B)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DATA P/.327591100/,A1/,25482959200/,A2/ . 28449673600/
H ,A3/1.42161374100/,A4/1.45315202700/,A5/1.06140542900/

OEXF=0.00D0

[F((DABS(A).GT. BZ DD) AND.(B.LE.0.0D0)) RETURN
1F(B.NE.O0.0) GOTO 10

OEXF=DEXP(A)

84

RETURK
10 C=A-8"8

1F((DABS(C).GT.82.00).AND.(B.GT.0.D0)) RETURN

1F(C.LT.-82.000) GOTO 25
X=DABS(B)
!F(X G7.3.000) GOTO 15

= 1.00/(1.000+P*X)

Y = T*(AT-T*(A2-T*(A3-T*(A4-A5*T))))

GoTo
15y =
#))))))
20 DEXF = Y*DEXP(C)
25 1F(B.LT.0.0D0) DEXf =

RETURN
END

2.DO*DEXP(A)-DEXF

0 20
564189600/ (X+.500/(X+1.D0/(X+1.500/(X+2.00/(X+2.500/(X+1.00

FUNCTION AI(ZA,IOPT) -- THIS FUNCTION SUBROUTINE COMPUTES THE
AIRY FUNCTION FOR POSITIVE ARGUMENTS.

1F 10PT =
1F 10PT =
1F 10PT =

-1, USE THE SMALL ARGUMENT SERIES SOLUTION
0, USE THE LARGE ARGUMENT SERIES SOLUTION
1, USE THE INTEGRAL SOLUTION METHOD

THE AIRY FUNCTION 1S SCALED (MULTIPLIED) BY:

(2**0.25)*EXP(U), WHERE U=(2./3.)*(2**1.5)

OOOO0O00O00N0000

oo

[zXa}

oo

DOUBLE PRECISION FUNCTION AI(ZA,I0PT)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION XG(10),WG(10)
COMMON IN,IT,10,1L

DATA C1, c2/. 355028053887800 .258819403792800/
DATA COEF1 CCEF2,COEF3, COEFQ COEFS,COEF6/9.555526226877D-29,
1 4.2356055970200-32,1.6610218027530-35,1.0135782122940-29,
2 4.3094311747180-33,1.6249740477820-36/

DATA V/. 333333333333333300/ PISQR3/5.44139809300/,

# PIRT2/3.544907701800/,P173.14159265359000/, P104/7.853981634D- 1/

#,A23/. 666666666666666700/
DATA NG/10/,XG/.76526521133497330 -

1,.227785851141645000,

#.373706088715419500, 510867001950827000 .636053680726515000,
#.7463319064601507D0, .839116971822218800, . 912234428251325900,
#.9639719272779137D0, . 993128599185094900/

DATA WG/.152753387130725800, . 149172986472603700,
#.142096109318382000, . 131688638449176600, . 118194531961518400,
#.1019301198172404D0, .8327674157670474D- 1, . 62672048334 1090601,

#,40601429800386940 -

----- function statements -----
FNCY)
DACOSH(Y)

1F(ZA.LT.0.D0) WRITE(IO,900)
1F(ZA.LT.0.D0) STOP
1FCIOPT) 10,20,30
----- series expansion for Ai(2A)
10 P=2A**3
F=1.D0+P*( 1.666666666667D-01+P*(
P*( 7.7160493827160-05+P*(
P*( 2.783567598382D-09+P*(
P*( 2.165863366311D-14+P*(
P*( 5.589267120625D-20+P*(
6.083754702874D-26+P*¢
P*( 3.258014000211D-32+P*(
P*( 1.00'10'COEF1¢P'(

NN W
'l
*
~

1,.17614007139152110-1/

= DEXP(-ZK*DCOSH(Y))*DCOSH(V*Y)
= DLOG(Y+DSQRT(Y*Y-1.000))

(for 0.0 =< 2A < 3.0)

5.5555555555560-03+
5.845491956603D-07+
9.096626138505D- 12+
3.9236655186790-17+
6.426444966235D-23+
4.828376748313D-29+
1.8919941929220-35+

1.00-10*COEF2+

P*( 1.00-10* COEF3)))31))11)IN))
G=ZA*(1.00+P*( 8.333333333333D-02+P*( 1.9841269841270-03+

NV I NN

Al=C1*F-C2*G
U=A23*2A**1.500
AI=(ZA**0.25D0)*DEXP(U)*Al
RETURN

----- asymp
20 2K=A23*2A**1.5
P=1,00/2K
A=1.D0+P*(-6.94444bbbthshD-02+P*(
P*(-3.7993059127800- 02+P* (
P*(-1.160990640255D01+P* (
P (-B. 7766696951000 -01+P* (
P*(-1.2341573332350401+P*(
P* (-2, 7BA6508077760+02+P*¢

oS LN

Al=A/PIRT2
RETURN

tot\s expansion for Ai(2A)

P*( 2.204585537919D-05+P*( 1.4131958576400-07+
P*( 5.888316073501D-10+P*( 1.721729846053D- 12+
P*( 3.726687978470D-15+P*( 6.211146630783D-18+
P*( 8.2158024216700-21+P*( 8.8341961523330-24+
P*( 7.8736151090320-27+P*( 5.9111224542280-30+
P*( 3.789181060403D-33+P*( 2.0981068994480-36+
P*( 1.0D-10*COEF4+P*(
P*( - 1.00-10*COEF6))))))NININNIIINY -

1.00-10*COEFS+

(for 2A > 5,000)

3.713348765432D-02+
5.7649190412670-02+
2.915913992307D-01+
3.0794530301730+00+
5.5622785365910+01+
1.5331694320130+03+

P*(-9.2072065997260+03)))))))))))))

----- integral representation for Ai(ZA) (for 3.0 =< ZA =< 5.0)

= 2.000*(ZA**1,500)/3.000
TMP = 70.D0/2K
IF(TMP.LE.1.000) THEX
XL=20.000/2K

ELSE
XL = DACOSH(TMP)
ENDIF

BA2 = XL/2.00
SUM = 0.00+0
SUM1 = 0.00+0

DO 35 I=1,NG

Y = BA2*(XG(I) + 1.000)
Y1= -BA2*(XG(!) - 1.000)
SUM = SUM + WG(I)*FN(Y)
SUM1 = SUM1 + WGCIX*FN(Y1)

35 CONTINUE

o

SUM = BA2*(SUM+SUM1)

Al = OEXP(ZK)*(ZA**C.7500)*SUM/PI5QR3



C
900

RETURN

FORMAT (' *** WARNING *** SUBROUTINE Al(2) WILL NOT EVALUATE A
# NON-POSITIVE ARGUMENT OF AI(2).')
END

aocoo0o
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SUBROUTINE LINV -- FINDS THE STEHFEST WEIGHTING COEFFICIENTS

©

o

15
20

3

35
40

o

2

v

SUBROUTINE LINV(IA,IB,N,V,G,H)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION G(IA),V(1A} H(IB)

G{1)=1.00

NH=N/2

00 10 I=2,N

G(1)= G(l 1)'DBLE(1)
CONT IR

H(1=2. DO/G(NH ib}

DO 20 I1=2,NH

F1=0BLE(1)

IF(I.EQ.NH) GOTO 15
HOL)=(FI**NH)*G(2*1)/(G(NK-1)*G(1)*G(1-1))
GOTO 20

géa) (Fl"NH)‘G(Z'l)/(G(I)'G(l-1))

ISN= 2'(NN (NH/2)%2)-1

00 25 1=1,N
V(1)=0,00
K1=(1+1)/2
K2=

=]
IF(K2.GT.NH)K2=NH
00 40 X=K1,K2
1F(2*K-1.EQ. 0) GoTC 30
1F(1.EQ.K) GOTQ 35
V(l) VII+H(K)/(GCT-KI*G(2*K-1))

0 40
V(l) V(l)*N(K)/G(l K}

GOTO
V(I)= V(l)’H(K)/G(Z'K -1)
CONTINUE

V(I1)=ISN*V(1)

ISN=-1SN

CONT INUE

RETURN

END

LA lls

ooaononOooo

800
805

SUBROUTINE INTRAC -- ALLOWS INTERACTIVE INPUT

(Yh\s subroutine and the calllng statement in the main program

an be removed if interactive input is not required)
tt.tﬁ..'t'tﬁt-itt."lﬁ'."'ttt

SUBROUTINE INTRAC(TITLE,1BC,N,R1,R2,D,B,N2,DM2,LAM,Q, NR, RO
# ,R,OR,NZ,DZ,NT,T)

IMPLICIT DOUBLE PRECISION (A-4,0-2)

DOUBLE PRECISION N2,LAM

DIMENSION T(10)

CHARACTER TITLE(3)*70

COMMON IN,1T7,10,1L

FORMAT (1X,A50,$)

FORMAT (1X,A50)

CALL VTPOS!

00 10 121,3

WRITE(1T,805)¢ GIVE A LINE OF TITLE '
READCIT, '(A)') TITLE(I)

CALL VTPOSI

WRITECIT,805)' GIVE O: for DE:AYING BOUNDARY CONDITION
WRITE(IT,800)' or 1: for COJSTANT CONCENTRATION BOUNDARY ==>
READCIT,*) IBC

CALL VTPOSI

WRITE(IT,800)' GIVE THE NUMBE? OF WEIGHTING FACTORS [N) ==>
READCIT,*) N

CALL VTPOSI

WRITE(IT,B00)' GIVE RETARDATION FACTOR [FRACTURE: R1
READCIT,*) R1

CALL VTPOSI

WRITECIT,800)' GIVE RETARDATION FACTOR (POROUS MATRIX: R2]
READCIT,*) R2

CALL VTPOS]

WRITECIT,800)' GIVE DISPERSIVITY IN THE FRACTURE (d] == 1
READ(IT,*) D

CALL VTPOSI

WRITE(IT,800)* GIVE HALF FRACTURE APERATURE DIMENSION [b]  ==> ¢
READCIT,*) 8

CALL VTPOSI

WRITE(17,805)' GIVE POROSITY F POROUS MATRIX ([n ]

WRITE(IT,800)" 2 ==
READCIT,*) N2

CALL VTPOS!

WRITE(IT,B05)* GIVE DIFFUSION COEFFICIENT IN MATRIX [Om ) '
WRITE(IT,B00)" 2 ==
READCIT *) DM2

CALL VTPOSI

WRITE(IT,800)' GIVE RADIOACTI'/E DECAY CONSTANT [lambdal ==
READCIT,*) LAM

CALL VTPOSI

WRITECIT,800)' GIVE THE INJEC’ION RATE (Q) s=>
READCIT,*) @

CALL VTPOSI

WRITE(1T,805)' GIVE THE NUMBER OF RADII (NT1, WELL RADIUS (RO),
WRITE(IT,805)' START RADIUS (i!) AND DISTANCE BETWEEN RADII [DR)
WRITECIT,800)" ==>
READCIT,*) NR,RO,R,DR

CALL VTPOSI

WRITE(IT,805)' GIVE THE NUMBER OF TIMES THE CONCENTRATION ,
WRITE(IT,800)' PROFILE IS TO HE CALCULATED [NT)
READCIT,*) NT

CALL VTPOSI

DO 15 1=1,NT

CALL VTPOSI

"
"
v

"
"
v

n
"
v

WRITE(IT,810) 1
15 READCIT,*) T(1)

810 FORMAT(1X,' GIVE THE *,12,'th TIME {T(1)]',20X,'==> ' 8$)
CALL VTPOSI
WRITE(IT,805)' GIVE THE NUMBER OF VERTICAL POSITIONS WHERE A '
WRITE(IT,805)' POROUS MATRIX CONCENTRATION IS TO BE CALCULATED '
WRITE(IT,800)" 22>
READ(IT,*) NZ
1F(N2.EQ.0) RETURN
WRITE(IT,800)' GIVE THE SPACING BETWEEN VERTICAL POSITIONS ==> !
READCIT,*) DZ
RETURN
END

SUBROUTINES VT*** -- VIDEO DRLVERS FOR VT-100 AND VT-52

[sXsX2XsXskzXs!

SUBROUT INE VT100
CHARACTER*1 ESC

DATA E£SC /#1B/
WRITE(S,900) ESC
FORMAT ('+1,1A1,7<")
RETURN

END

90

1=3

SUBROUTINE V152
CHARACTER*1 ESC

DATA ESC /#18/
WRITE(S,900) ESC

FORMAT ('+!,1A1,1[7211)
RETURN

END

90

t=3

SUBROUTINE VTPOSI

CHARACTER*1 ESC

CHARACTER CMD1*S,CHD2*3

DATA ESC /#18/,ILINE/B/, 1COL/Y/
DATA CMD1 /' [1;1f'/,

# CMD2 /' €241/

WRITE(5,900) ESC,CMD1,ESC,CMDZ
WRITE(5,905) ESC,ILINE,ICOL
RETURN

o

ENTRY VTPOS1
WRITE(5,900) ESC,CMD1,ESC,CMDZ

900 FORMAT ('+',A,A,A,A,$)

905 FORMAT ('$' A1, '[',12.2,';",13.3, 1)
RETURN
END

SUBROUTINE VTWAIT

CHARACTER*1 ESC

CHARACTER CND1'5 CMD?‘}

COMMON IN,IT,

DATA ESC /#15/ ILINE/Z‘/ coLs 1/
DATA CMD1 /'[1;1f'/,

# CMD2 /'(2J)'/

(X s

----- if output device is the printer -----
{F(10.EQ.1T) GOTO 10

WRITE(10,900)

RETURN

0

----- if output device is the terminal -----
WRITE(S5,905) ESC,ILINE,ICOL

WRITE(10,910)

READ(IT,915) TMP

WRITE(5,920) ESC,CMD1,ESC,CMDZ

RETURN

o

900 FORMAT('1")
905 FORMAT('S' A1, '[', 12.2,';',13.3,'¢")
910 FORMAT('+ Type return to continue >>> ' %)
915 FORMAT(G1.0)
920 FORMAT('+' A, A,A,A,$)
END

Appendix 2. Examples of Program Input and Output

Example input data set

5.0E-5 .01 1.0E-3 .01 3.65

Ao

Vertical concentrations will be calculated
A constant boundary condition exists at the welt
16 Stehfest weighting factors will be used to invert the Laplace transform
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INPUT PARAMETERS Barker, J. A. 1982. Laplace transform solutions for solute
transport in fissured aquifers. Adv. Water Resour.

Dispersivity of the fracture {L].....c.covvvveneeninianns 1.000000E-01
Retardatjon A‘:o:fficient for fracture walls (01.......... 1.000000€+09 v. 5, pp. 98-104.
Halt width of fracture aperature [L)..... Sriesieanenaeen .000000E -05 . . .
Diffusion coetficient of:eporous matrix (LA/T1...oo 1-000000€ -03 Chen, C. S. 1986. Solutions for radionuclide transport from
Retardation coefficient for porous matrix (0l........... . E+00 [ : : : :
porasity of the porous macrix 101 1.000000¢ 02 an injection well into a single fracture in a porous
Radicactive decay constant [1/T]........ . E-02 .
Constant injection rate [L*L*L/T] 3.650000E+00 formation. Water Resour. Res. v. 22, no. 4,
pp. 508-518. .
Hodgkinson, D. P. and D. A. Lever. 1983. Interpretation of
CALCULATED PARAMETERS > |
sssssszsssssssmsssssss a field experiment on the transport of sorbed and
Advection paraneter (A)................. 5.809155€+03 nonabsorbed tracers through a fracture in crystalline
Dimensionless radius of the well ( Yoo . E+ . o N
Dimensionless distarl\ce between radii (DRHO . 1.000000E+01 rock. Radioact. Waste Manage., Nucl. Fuel Cycle.
Ratio of diffusive loss to injection (ALPHA 8.298001E-03 =
Dimensionless radioactive decay constant (ALPHA1)....... 1.721421E-08 v. 4' no. 27 pPp. 129 158.
pDimensiontess vertical spacing (OXI).....ccovviununnennn 4.820438E+01 Hsieh, P. 1986. A new formula for the analytical solution
of the radial dispersion problem. Water Resour. Res.
STEHFEST WEIGKTING FACTORS v.22,no. 11, pp. 1597-1605.
Neretnieks, 1. 1980. Diffusion in the rock matrix: an
) v(r) 11 V(i) . £ . di lid d . 5
1 g?gg_z,gggsgé 18 ;ggsgﬁggpgq important factor in radionuclide retardation:
. E+ . E+09 -
: -5.5101667E+02 ik -3.3997020E409 J. Geophys. Res. v. 85, no. B8, pp. 4379-4397.
H R In 12 EIE e Neretnieks, I. and A. Rasmuson. 1984. An approach to
6 1.0076184€+07 14 1.2270498E+09 modeling radio-nuclide migration in a medium with
7 -7.3241383€+07 15 -3.4273456E+08 . ) .
8 3.3905963€+08 16 4.2B41819€+07 strongly varying velocity and block sizes along the
flow path. Water Resour. Res. v. 20, no. 12,
CONCENTRATION DISTRIBUTION pp 1823‘1836
Rasmuson, A. 1984. Migration of radionuclides in fissured
Time = 1.00000€-02 Tau = 5.B80916€+03 rock: analytical solutions for the case of constant
! R z ¢/Co h. r. Res. v. no. 10
1 :.ggg gggg ’ZZ‘;Z sourfj;;ril;itz Water Resour. Res. v. 20, no s
2 . . . . - .
3 1.000 -0040 -3659 PP ' L .
4 1.000 -0060 1758 Rasmuson, A. and I. Neretnieks. 1981. Migration of radio-
1.000 -0080 -o713 L . .
(5, 1.000 10100 ‘0243 nuclides in fissured rock: the influence of micropore
: 200 o o diffusion and longitudinal dispersion. J. Geophys.
. 2.000 D0u 32 Res. v. 86, no. BS, pp. 3749-3758.
" 2.000 -bose Dese Stehfest, H. 1970a. Numerical inversion of Laplace trans-
13 3-000 0000 9682 forms. Commun. ACM. v. 13, no. 1, pp. 47-49.
15 3.000 20040 13296 Stehfest, H. 1970b. Remark on algorithm 368, numerical
) g
16 3.000 .0060 1493 . .
17 3.000 -0080 10563 inversion of Laplace transforms. Commun. ACM.
2000 -0100 0175
19 2000 “0000 527 v. 13, no. 10, p. 624.
2 .00 0020 S Sudicky, E. A, and E. O. Frind. 1982. Contaminant trans-
H 4-000 000 e port in fractured porous media: analytical solutions
2 “-002 -0100 -0128 for a system of parallel fractures. Water Resour. Res.
25 5.00 .0000 .9066
2 5.000 20020 5311 v. 18, no. 6, pp. 1634-1642.
a o0 grots 2368 Tang, D. H., E. O. Frind, and E. A. Sudicky. 1981. Con-
@ 2 000 -Doso 9320 taminant transport in fractured porous media:
i 6.o00 -0000 8260 analytical soltuion for a single fracture. Water
3 6.000 -0040 -2055 Resour. Res. v. 18, no. 3, pp. 555-564.
3 6.000 -0060 .0713
35 6.000 -080 L0196
3% 6.000 .0100 .0042
37 7:000 0000 7904 * * * * *
38 .000 .0020 .3870 X
4 7900 S0ae Y Chia-Shyun Chen is an Associate Professor of
4 ;ngg 8288 ng Hydrology in the Geoscience Department of New Mexico
Q3 8.000 -0000 -6861 Institute of Mining and Technology. He did bis M.S. and
4 .000 . : , . . :
,‘é 3_880 ,8858 S;Zg Ph.D. in the Agricultural Engineering Department of
s HETH “oss o Colorado State University and Texas A & M University,
Pt 8-000 o100 o008 respectively. Prior to joining academics, be worked in a
0 5000 -9020 038 consulting firm for three years working on numerical simi-
32 3000 Igggg 0052 lation of transport problems under field conditions. His
54 9.000 10100 10000 research interest is matbhematical modeling of transport
s 101000 0030 8561 phenomena in subsurface bydrology
6 10. -0020 -0561 .
57 10.000 -0040 -0072 ; o ; . b
S8 10.000 " 0060 10001 Scott R. Yates received bis B.S. in Geology from the
¥4 10900 -Dosa 0000 University of Wisconsin in 1980, M.S. in Hydrology from
New Mexico Institute of Mining and Technology in 1982,
g g
and Pb.D. in Soil and Water Science from the University of
Arizona in 1985. He is currently a Soil Scientist for the
USDA/ARS at the U.S. Salinity Laboratory in Riverside,
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