Peer Review of Research Project Plans

This handbook provides guidance for preparing research Project Plans for Peer Review through the Office of Scientific Quality Review.

January 2014
Office of Scientific Quality Review
Agricultural Research Service
This Handbook replaces the “OSQR Manual” (500-1: Peer Review of ARS Research Project Plans). Appendix 14 replaces Bulletin No. 07-601: Postponement Guidelines. It is issued by the Office of Scientific Quality Review (OSQR) and is available from their web site (www.ars.usda.gov/osqr) in PDF format. Printed copies will be sent upon request. The text is formatted so as to facilitate printing in a two-sided format.

Inquiries regarding this Handbook should be directed to the Office of Scientific Quality Review.

Office of Scientific Quality Review
August 2008

Updates
April 2009. Definitions of Action Classes (Section 3.4.1) made consistent across all review materials.

September 2009. Clarified that Physical and Human Resources and Project Management and Evaluation (Section 3.3.3) are not included in the page limit.

October 2009. Clarified that Literature and following are not included in the page limit.

March 2010. Revised Chapter 3 and Appendix 13 information relative to the National Program Leader validation of plans. Also clarified language under “Accomplishments from the Prior Project Period” (p.14).

July 2010. Revised Appendix 13 to clarify that both the Validation page and the Signature page are included in the plan submitted for review.

March 2011. Added Appendix 2 and text in Ch. 3 on Significant Change, added definitions for Certification, Validation, removed reference to PPO, and added explanation of collaborations and COI listings and their use (box on p. 9).

April 2012. Clarified administrative pathway for postponement requests (2.1.1), and added potential for goal as an alternative to hypotheses (Appendix 7).

January 2014. Slightly revised Milestones Table Format (3.3.3 and Appendix 7).

August 2014. Clarified wording for COI lists (3.2, p. 9)
TABLE OF CONTENTS

PREFACE ... iii

TABLE OF CONTENTS ... v

1. RESEARCH Project PLANS AS PART OF ARS SCIENTIFIC PROGRAMS 1
 1.1 Office of Scientific Quality Review ... 3
 1.2 Peer Review and ARS Management ... 3

2. Administration of Peer Review ... 5
 2.1 Identifying Projects to be Reviewed ... 5
 2.1.1 Postponing Reviews .. 5
 2.1.1 Exempting Projects from Peer Review ... 5
 2.1.3 Significant Change Necessitating New Review .. 5
 2.1.4 Ad Hoc Reviews .. 6
 2.2 Project Plan Development .. 6
 2.3 Peer Review Outcomes .. 6
 2.4 Revision and Response to Peer Review .. 7
 2.5 Certification .. 7

3. Project Plan Development and Revision .. 9
 3.1 Project Plan Outline ... 9
 3.2 Conflict of Interest List ... 9
 3.3 Project Plans ... 10
 3.3.1 Project Plan Formatting ... 10
 Filenames, Headers, and Footers ... 10
 Page Limits .. 10
 Extra Pages .. 11
 3.3.2 Project Plan Submission .. 11
 3.3.3 Project Plan Components and Instructions ... 11
 Cover Page .. 11
 Signatures .. 11
 Table of Contents .. 11
 Project Summary .. 11
 Objectives ... 12
 Need for Research ... 12
 Scientific Background ... 12
 Related Research .. 12
 Approach and Procedures ... 13
 Contingencies ... 13
 Collaborations ... 13
 Physical and Human Resources ... 13
 Project Management and Evaluation .. 14
 Milestones Table ... 14
 Accomplishments from Prior Project Period ... 14
 Literature Cited .. 14
 Past Accomplishments of Investigators ... 15
 Issues of Concern ... 15
Existing SCAs... 15
Appendices .. 15
3.4 Response to the Peer Review.. 16
3.4.1 Action Class Rating .. 16
 No Revision Required .. 16
 Minor Revision Required ... 16
 Moderate Revision Required ... 16
 Moderate Revision Required ... 16
 Not Feasible .. 16
3.4.2 How to Respond .. 16
3.4.3 Post-Peer Review Signature Page .. 17
3.4.4 Action Classes and Actions ... 17
 No, Minor or Moderate Revision ... 17
 Major Revision ... 17
 Not Feasible .. 17
 Panel Re-Review .. 17
4. Components of Peer Review ... 19
4.1 Panel Chairs and Panelists .. 19
4.2 How A Panel is Selected ... 19
4.3 Responsibilities and Administration .. 19
 4.3.1 Panel Chairs ... 19
 4.3.2 Panelists ... 19
 4.3.3 Panelist Preparation ... 20
 Conflicts of Interest .. 20
 Confidentiality of Information .. 20
 Reviewer Training ... 20
4.4 Release of Information ... 20
4.5 Re-Reviews ... 20
4.6 Panel Reports, Distribution of Scores .. 20
4.7 Ad Hoc Reviews .. 21
5. Roles and Responsibilities .. 23
5.1 Administrator’s Office .. 23
5.2 The Office of Scientific Quality Review (OSQR) .. 23
 5.2.1 Scientific Quality Review Officer ... 23
 5.2.2 Peer Review Program Coordinator .. 23
5.3 Area Director’s Office ... 23
5.4 National Program Leader/Deputy Administrator ... 24
5.5 Research Leader, Lead Scientists and Research Team .. 24
5.6 ARS Focus Group on Peer Review ... 24
List of Acronyms and Abbreviations .. 25
Glossary .. 27
Appendices ... 31
1. Authorities for Peer Review .. 33
2. Significant Change ... 35
3. Example of a Project Plan Cover Page .. 37
4. Signature Pages .. 39
5. Sample Project Flow Diagram .. 43
6. Hypothesis and Non Hypothesis Research .. 44
7. Milestones .. 46
8. Project Plan Checklist ... 49
9. Intellectual Property ... 53
10. Action Class Rating Worksheet ... 55
11. Sample of Peer Review Recommendations and ARS Response 57
12. Confidentiality Agreement .. 59
13. ONP Guidelines: Development of 5-Year Plans and Validation 61
14. Postponement Guidelines .. 65
RESEARCH PROJECT PLANS AS PART OF ARS SCIENTIFIC PROGRAMS

The ARS Peer Review Process is an essential part of the 5-year ARS research program cycle (Figure 1). Review was mandated by the Agricultural Research Extension, and Education Reform Act of 1998 (Appendix 1), which requires successful completion of peer review as a prerequisite to performance of research. This handbook is intended to provide guidance as ARS researchers prepare project plans. As such, researchers are strongly urged to read it through before developing a project plan.

While this outlines a general format for plans (Figure 2), the most important aspects of a highly rated plan are clarity, logical presentation, and ease of understanding. Project size and/or number of objectives and sub-objectives may make departure from the prescribed format necessary to achieve a clear presentation. Researchers are, above all, to provide plans that are well-prepared, appropriately documented, logically presented, and carefully and thoroughly edited.

The ultimate responsibility for quality in a project plan rests with the project team. The Office of Scientific Quality Review provides information on project plan development at scheduled online
Success in Peer Review is a cooperative effort among many within the Agency. The Office of National Programs (ONP), in cooperation with the Area Office, Research Leaders (RLs), and individual researchers, establishes objectives, outlining the research to be performed in accordance with Congressional mandates and customer and stakeholder input. As plans are developed the recommendations, informal review, and guidance of RLs, the Area Office, and others is important to development of a clear, well-prepared plan. Research teams, in response to the ONP-issued objectives, develop research plans detailing the work to be performed over 5 years. These plans are evaluated by a panel of external scientists who focus on three key elements of research planning:

(1) Adequacy of experimental approaches and procedures;
(2) Probability of success in accomplishing the project’s objectives; and
(3) Merit and significance of the research proposed.
1.1 Office of Scientific Quality Review
The Office of Scientific Quality Review is responsible for implementing and tracking the project review process under the Associate Administrator for Research Operations. A Scientific Quality Review Officer is appointed from the ranks of senior ARS scientists to serve a 2-year term in an oversight role of the peer review process and to certify completed project plans.

1.2 Peer Review and ARS Management
ARS’ matrix management means that responsibilities for research development and management are shared between ONP and the Areas:

Program Management (ONP), addresses the direction of national programs. National Program Leaders (NPLs) are responsible for developing the National Program Action Plan, determining national research priorities, and for allocating resources. NPLs validate prepared plans to assure that they address the objectives as assigned and that the approaches are suitable for achieving the objectives.

Line Management (Areas), addresses issues of research staff, physical, and human resources. Areas have oversight responsibility for quality, implementation, and performance with regard to research project plans. Each Area has established procedures for internal review of plans prior to their submission to OSQR. The value of rigorous and candid review prior to external peer review cannot be overstated.

While, on the surface, these may appear to be compartmentalized responsibilities, the essence of matrix management is the cooperation from ONP through Areas to research teams and researchers to produce a clear, concise, and aggressive research program which addresses the most urgent and important needs for agriculture. A successfully reviewed project plan represents the effort of all (National Program Leaders, Area Directors, Center or Institute Directors, Research Leaders, Lead Scientists, and scientists) to produce a clear and effective research plan.
2
ADMINISTRATION OF PEER REVIEW

The ARS Peer Review Process can be seen in four stages:
1) Identifying Projects to be Reviewed;
2) Project Plan Development;
3) Peer Review; and
4) Response to the Peer Review.

If these steps are successfully achieved, the project is certified. This Chapter provides administrative guidance for this process.

2.1 Identifying Projects to be Reviewed
Projects for review are identified by National Program Leaders (NPLs) with input from scientists, Research Leaders (RLs), and Area Directors (AD). These discussions identify locations and scientists who can contribute to the National Program. The Program Direction and Resource Allocation Memo (PDRAM) outlines specific project objectives and sets a schedule for the development and review of the project plan. The initial list of projects to be reviewed typically (but not necessarily exclusively) will be based on category “D” projects coded to a National Program. In rare cases, a research team may be granted a postponement of the review of their plan (see 2.1.1). Some short-term (less than 5 years) or service-based projects may be exempted from review. The current schedule for review of National Programs is at www.ars.usda.gov/osqr.

2.1.1 Postponing Reviews
In general there are two reasons for requesting postponement from peer review:
1) Vacancies or long-term absences in key scientific leadership positions; and
2) Significant reorganization, initiation, or redirection of a project.

Requests to postpone are sent from the Area, through the relevant National Program Leader and Deputy Administrator to the Office of Scientific Quality Review (OSQR). Once complete they are forwarded by OSQR to the Associate Administrator for Research and Operations for review and approval. The likelihood of approval of a request should not be presumed. Requests for postponement of peer review of a project plan are granted only under exceptional circumstances. The Lead Scientist or Research Leader (RL) typically initiates a request, which should, in general, be prior to receipt of the PDRAM (Appendix 14).

2.1.2 Exempting Projects from Peer Review
Under certain circumstances, a project may be exempt from the peer review process. These are handled on a case-by-case basis by Area Management and the relevant NPL. Decisions are subject to review by the Associate Administrator for Research and Operations.

2.1.3 Significant Change Necessitating New Review
Changes to the objectives or approach in a project plan may necessitate new (ad hoc) review of the altered portions of a plan (Appendix 2).

Significant change is any alteration to the current project plan goals or objectives that would introduce need for expert input that was not provided during the original peer review. Appendix 2 provides guidance on format of such material for review. Significant change could include:
a) A new research approach that was not in the original plan;
b) Addition of one or more newly-created objectives to the plan; or
c) Inclusion of unreviewed research from other projects.

It is the RL’s responsibility to ensure that research is conducted as originally outlined. Changes that impact the plan should be discussed with the Center, Institute, or Laboratory Director, Area Office, and the Office of National Programs (ONP).

2.1.4 Ad Hoc Reviews
ARS recognizes that research agendas are dynamic. There may be modifications or new projects created by changes in mission or programmatic direction, Congressional mandates, redirection or new objectives, new initiatives or funding, and organizational and staffing changes. A new research project plan, or one that has been significantly changed, may require an *ad hoc* review if the relevant panel review session is more than 2 years away (See 2.1.3).

Ad hoc reviewers are knowledgeable scientists within the discipline who, typically, provide written comments. These are compiled and response boxes (See 3.4.2) are inserted by the Scientific Quality Review Officer (SQRO). A compiled set of comments is sent back through Area Office for response and revision as is done for panel-reviewed plans. Where several similar plans are scheduled for *ad hoc* review, an *ad hoc* panel may be convened to perform the review. Such panels provide responses in a manner similar to regularly scheduled review panels.

2.2 Project Plan Development
Preparing the project plan is a multi-step process. The project team (Lead Scientist and research team), RL, and Center/Institute/Laboratory Director share responsibility for the creation of a quality project plan. The foundation for the project plan is the PDRAM which provides some background and justification for the new project, sets objectives, and allocates resources related to overall funding and personnel.

In response to the PDRAM, the project team through the leadership of the Lead Scientist prepares a Project “Pre-Plan” which is approved by the RL, Center/Institute/Laboratory Director, AD, and NPL. Communication among the project team and with RL, Center/Institute/Laboratory Director, Area Director, and NPL is critical to this process. *Quality plans are carefully prepared documents that clearly describe the approach, impact, collaborations, and capabilities of the team to address the stated objectives.* Prior to submission of the plan to OSQR, the NPL reviews and validates that the objectives are as assigned and that the approaches are suitable for achieving those objectives (Appendix 13).

Plans submitted to OSQR for review are designated as a “PrePlan” while the final, certified plan received following upon completion of review is termed a “PostPlan” (See 3.3.1).

2.3 Peer Review Outcomes
Peer review by OSQR-appointed panel or *ad hoc* review results in both quantitative and qualitative evaluations. Quantitative response is in the form of Action Class Scores (see section 3.4.1 for description of Action Classes) provided by each reviewer. (The overall action class for a plan is the average of all individual scores.) Qualitative review is in the form of a consensus narrative detailing specific review comments and recommendations. OSQR distributes review results to the research team’s AD, with copies to the National Program team. These are for-
warded to the research team through line management. Also included are instructions for revising and responding to reviewers’ comments.

2.4 Revision and Response to Peer Review
The Administrative Procedures and the Federal Advisory Committee Acts, require ARS to make a reasonable effort to use the advice received from peer reviewers and to provide response to that advice. It is for this reason that a revised project plan, regardless of the Action Class Score received, be accompanied by a point-by-point response to panel recommendations.

2.5 Certification
The SQRO, on behalf of ARS, certifies that the response to the peer review process is complete and that revisions to the project plan are satisfactory. Instructions are contained in the certification memo to submit the AD-416/417 as the initial step in the implementation of the project. Certification by the SQRO is not automatic. The officer’s responsibility is to assure that satisfactory responses to identified panel concerns are received and that revisions to the plan are appropriate. Thus, the SQRO may return a plan where the responses are considered inadequate or incomplete. While there is no mandated limit to the number of times a plan may be returned, persistent refusal or inability to satisfactorily address identified problems could result in the officer terminating review and declining to certify the plan. In such a case, the plan would fail review.

<table>
<thead>
<tr>
<th>Competitive or Non-Competitive Review?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of ARS Project Plans is not competitive. The panels do not award research grants among several potential research groups. Rather, the review is an examination of the scientific quality of a prospective plan. Budget and other resource-related evaluations are not considered.</td>
</tr>
<tr>
<td>However, reviewers typically have experience in competitive panels for USDA or other agencies. Thus, they carry with them a sense of quality based on the highly competitive plans seen elsewhere. That understanding can significantly influence their notions of an acceptable research plan.</td>
</tr>
<tr>
<td>Further, it is not unusual or unexpected for panelists to gauge their understanding of plan quality and Action Class scores against the other plans they review in the panel. In this light, several strong plans in a panel can “raise the bar” for what is expected to achieve a high score.</td>
</tr>
<tr>
<td>In short, this review is not competitive, but researchers are strongly urged to treat it as if it were!</td>
</tr>
</tbody>
</table>
Collaborators and COI Lists

Collaborators are persons with whom you do research. They are not colleagues with whom you serve on panels or committees. Discussing the potential for joint work with someone does not make them a collaborator (or someone with whom you planned research…unless it leads to a joint proposal). Similarly, if you author a chapter in a book that someone edits but they are not on that chapter, they are neither a coauthor nor collaborator for OSQR purposes. Further, if you are part of someone else’s project and they have another individual as a collaborator, that other individual is not your collaborator (the collaborator of my collaborator is not my collaborator). Finally, if you ask someone for samples or information (sequences, germplasm, isolates) or they request them of you, or if you perform a service of identifying something for a researcher but have no joint research, they are not a collaborator because it is not joint research but simply sharing information, data, or samples.

Pseudocollaboration (a warning)
While listing someone as a collaborator may seem a simple way to exclude a potential reviewer, it is not permitted. COI lists are only one of the resources OSQR uses in assessing potential conflicts of interest. Where it becomes apparent that an individual does not have a conflict, or is not a recent (4 years) coauthor, they become eligible to be used as a reviewer. Thus, if you feel that a particular colleague might not be impartial or have other concerns, you may discuss this with OSQR and list them as a competitor. But this should be rare. If you lists several such persons you may be asked to revise it so that OSQR is able to secure qualified reviewers.

Conflict of interest relationships include: co-author; collaborator; supervisor or subordinate within 4 years; student or post-doctoral relationships within 8 years; or a potentially direct financial benefit from the research. If in doubt, contact the Office of Scientific Quality Review (OSQR). If there are other reasons for excluding someone from review of your plan, please contact OSQR.
An example COI List can be found on the OSQR Web site at www.ars.usda.gov/osqr. While a tabular listing is requested, it is not essential. OSQR will accept copies of similar conflicts forms for other programs, providing that they are developed using criteria no less than those stated here. In general, COI Lists are due shortly after receipt of the Program Direction and Resource Allocation Memo (PDRAM). See the Schedule of Peer Reviews at the above web site for the precise date for your National Program.

3.3 Project Plans

The project plan (termed a “PrePlan”) is a stand-alone document that enables reviewers to evaluate the merit, feasibility, and relevance of the proposed research. It should frame the research need, objectives, hypotheses or research goals, and expected outcomes for a defined program of research. The plan details experimental approaches, procedures, contingencies, and collaborations necessary for accomplishing the proposed research. *Clear, concise, and organized communication demonstrates to reviewers the team’s ability to achieve their objectives. Thus, well-written project plans provide tangible evidence of the quality of science within ARS.*

Plans are, typically, for 5 years, and are intended to be dynamic. Over time, the intended plan may need to be altered. Intermediate research results and discoveries may require the reformulation of hypotheses, experimental designs, or milestones. Where these changes are deemed significant, review of new portions of the plan may be needed (See Section 2.1.3).

3.3.1 Project Plan Formatting

While size and scope of a plan may dictate a slightly altered organization for ease of understanding, the basic formats below are guides to the elements and information that must be included.

Filenames, Headers, and Footers

For the project plan, create and name the file:

NP# Lead Scientist last name project # PrePlan.

Example: 303 Smith 1234-56789-000-00D PrePlan

(Note: the term PrePlan is replaced with PostPlan upon certification)

Text Headers should contain Lead Scientist last name flushed left, page numbers flushed right, please do not show a page number on the cover page.

Footer should contain a version date flushed left and file name flushed right. The version date should reflect the most recent changes.

Page Limits. The page length for the project plan, including the sections from Objectives through Approach and Procedures (but not including Literature Cited), varies from 15 to 30 pages depending on the total amount of time (in terms of Scientist Years, SY) devoted to the project:

<table>
<thead>
<tr>
<th>Total SY</th>
<th>Maximum Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>15</td>
</tr>
<tr>
<td>2 - 3.9</td>
<td>20</td>
</tr>
<tr>
<td>4 – 6.9</td>
<td>25</td>
</tr>
<tr>
<td>≥7</td>
<td>30</td>
</tr>
</tbody>
</table>

For plans with many SYs and objectives, it may be necessary to alter the overall format to achieve a clear, readable result (as, for example, moving background sections to precede the ap-
Many tell us that they simply do not have enough room to adequately explain their plan. In fact, a majority of project plans use fewer pages than they are allotted. Further, reviewers frequently argue the page limits could be further reduced.

The key to success is not length, but a clearly set out, logical, narrative that provides a concise and authoritative understanding of the basis for the work and the path to success. Achieving this requires careful editing, thoughtful writing, and frank critical review by colleagues (before reviewers see it). The narrative should be detailed and complete but additional supplemental information may be placed in an appendix.

The essential questions, knowledge gaps, methods, and anticipated results should be clearly understood from the opening pages of your plan (before the Background or Approach and Procedures sections). Panels understand that there are page restrictions and, typically, are led to ask for more information because the opening portions of the plan are unclear.

Extra Pages. The equivalent of up to four additional pages of tables, figures, diagrams, etc. may be included. The Milestone Table is not included in these four pages.

3.3.2 Project Plan Submission

Project plans are submitted electronically through the Area Office. Plans should be sent to the Area Office as MS-Word files. That office will convert the plan to PDF format for transmission to OSQR. The exception is the signature page for the *post* project plan. Once the plan is ready for certification, either an original signed by the Area Director or a PDF of it is required.

3.3.3 Project Plan Components and Instructions

This section provides guidance on the elements in a project plan, along with an order for their presentation. While all of this information is needed, each plan is unique and researchers are reminded that the principal aim is to present a logical, easily readable, document. Do not treat these as “boxes” on a government form. Similarly, assigning responsibility for writing of sections or subsections to colleagues and assembling the parts without careful editing for consistency of message can lead to a poor review outcome.

Cover Page – See Appendix 3 for example.

Validation Page – NPLs review and validate plans prior to submission to OSQR to assure that the objectives are as assigned and that the approaches are suitable for achieving them (appendix 13). *Plans must be received by OSQR not later than the established date but cannot be sent for review without this validation.***

Signature Page – Different signature pages are required for Pre-Review, Post-Review, and Re-Review of the project plans (Appendix 4). *Please note the statements that accompany signatures which imply responsibility for the content of the project plan.***

Table of Contents – Include the major headings in your plan, as suggested in this section. The organization may be altered to suit the scope and size of your plan; and to enhance clarity.

Project Summary – Like the abstract of a paper this should summarize the project in about 250
words (10 to 12 sentences). The text should aim at a general audience and provide a clear description of the overall goals, essential questions/knowledge gaps, general approach, and expected outcomes or benefits of the research. It is crucial that the reader gain a clear, but brief, knowledge of your project here to enable them to better understand the context for the greater detail provided later in the document. Avoid acronyms or word for word stating of objectives.

Objectives – The objectives should be as in the PDRAM or as subsequently-approved by ONP. Accompanying this should be one to three paragraphs illustrating the linkages and general bases for this set of objectives to be part of this plan. This provides a framework for the objectives and a clear context that will guide the reviewer. A figure to illustrate the relationships among objectives, overall goals or outcomes, and staff can be most valuable and is strongly encouraged (Appendix 5). Such a figure or diagram can be useful in refining the prior Project Summary section.

Need for Research – This short section (1-2 pages) summarizes the nature of the problem to be addressed, its relevance to the National Program Action Plan, the anticipated products, the potential benefits, the customers/recipients of the research, and, where appropriate, their involvement. Rather than detailing these as individual subsections, including the information in a single narrative will provide a clear picture while conserving pages. Build upon, rather than repeat, the project summary.

Scientific Background – The Scientific Background should focus on presenting the relevant (key) literature and identifying the gaps in knowledge the research addresses. This is, primarily, a discussion of the gaps in knowledge that the research is intended to address. The literature cited should be sufficient to allow reviewers to conclude the investigators have current knowledge and understanding of the field of study, not a comprehensive review. This should take no more than 1/3 of your allowed pages.

Results of past projects or other preliminary results of the investigators relevant to the current project plan may also be presented. If applicable, try to show how your project relates to other ongoing research within and outside ARS. It is not necessary to cite every ARS Research Project: only those relevant. Some of these projects might be discussed under collaborations in the Approach and Procedures section. It is important that peer reviewers see that investigators are aware of others performing similar research.

Related Research – This very important section shows the relationship of the research to other efforts within and outside USDA. Do not repeat detail that may be in the prior section. This includes but should not be limited to the CRIS search. If not included in the scientific background you may make this a separate section. The purpose is to show linkages and relation to other, related and similar, work. This is particu-
larly important where there are related or analogous ARS projects. As well, if there are signifi-
cant efforts outside of ARS, demonstrating your knowledge and/or cooperation with them can be
important. See http://cris.csrees.usda.gov for information on doing a search for related USDA
research.

Approach and Research Procedures – For each objective, elaborate on the following:

Experimental Design – Describe in appropriate detail (See Box: What is Appropriate Detail?) the
experimental design and related procedures. State, if applicable, the hypothesis or goal that will
be addressed and how results will be evaluated (Appendix 6). *Detail should be sufficient to in-
form the reviewer of the nature and appropriateness of the planned effort and the competence of
the project team.*

Contingencies – Discuss specific approaches and experimental options that will be undertaken if
the research plan proceeds faster or slower than anticipated, or if early plans prove impractical or
unsuccessful. (See Box: Contingencies).

Collaborations – Describe collaborations with other scientists to accomplish portions of this re-
search. These should include collaborations with scientists within and outside ARS. Collabora-
tions should be documented by a letter from the scientist that specifically details the collabora-
tion, how they will contribute to the project, and the level of commitment anticipated. A letter
assures reviewers that the collaboration is in place.

Contingencies

In a memo to Area researchers on developing a project plan Dr. Steve Shafer, former Midwest Area Di-
rector, gave the following useful guidance about contingencies.

This is a frequently misunderstood section, and frankly, I think it has evolved since we started
doing these project plans…This is definitely not a place to describe work you would do if you get
new funding, either appropriated or grants. This project plan should describe what you will do
over the next five years with the specific funds currently appropriated by Congress for the work.
Contingencies should describe what will drive your choices of direction as you get results.
Another way to think about this might be: What would make us decide to modify our [objectives
or] sub-objectives?

A very good approach to Contingencies is to link the section *explicitly* with Milestones that you
specify in the Milestone table that comes later in the Plan…If you create good Milestones that
serve as decision points along the way, and then Contingencies are the decisions that come as
a result of achieving those Milestones. For example, a good milestone may be completion of a
particular experiment that provides important data in the general progress of the plan. You may
not know exactly how that experiment is going to turn out (that’s why they call it “research”,
right?), but getting those data is a key event. Once you have that data set, you know whether to
choose one course of action and sequence of next experiments, or some other course of action.
Approached this way, contingencies are the options you will choose among when a milestone is
achieved. This is a very effective way to address both Milestones and Contingencies and shows
the reviewers additional depth to your thinking.

Physical and Human Resources – (Does not count against page limit). Describe the major
physical resources (i.e., facilities, major instrumentation and equipment, etc.) that are available to
accomplish the research. Show the number (FTE) of project personnel (e.g., post-docs, techni-
cians, graduate students) available for this project. While these may not be listed elsewhere this
is important for demonstrating that there are sufficient persons to accomplish the proposed work.
Vacancies in the research team should be addressed in this section with a discussion of the anticipated expertise and discipline and the expected contributions of this person to the project.

Project Management and Evaluation – (Does not count against page limit). It is particularly important for projects with several researchers to describe the overall management and evaluation plan. This section provides a basis for demonstrating how the project team functions and makes decisions.

Milestones Table – (Does not count against page limit). This illustrates intended progress through the plan. Reviewers look here to understand the path of the project. Milestones are points where significant accomplishments can be documented. (See Box: What is a Milestone?) These are identified for each objective or subobjective and hypothesis. The table also describes how progress will be documented through products (e.g., scientific papers, databases, germplasm releases, technology transfer, CRADAs). (Appendix 7)

As the work proceeds, milestones may need to be adjusted. Researchers should consult with the Area Office about the appropriate mechanism for this. OSQR does not monitor changes to milestones after certification.

Accomplishments from Prior Project Period – (Does not count against page limit). This section summarizes the research accomplishments from research by this team, relevant to this project plan, and which will terminate up to 2 years before this plan begins. The purpose of this section is to provide the reviewers greater detail on prior work (which may have been briefly described in the background) so as to demonstrate the team’s experience and preparedness for this work. The following information should be included: Terminating project number, title, and project period; Investigators; and Project accomplishments and impact; including: Summary of the most significant accomplishments and their related impact, including publications; and description of how the objectives and accomplishments relate to the current plan.

Literature Cited – (Does not count against...
Past Accomplishments of Investigator(s) – (Does not count against page limit). Begin each investigator's past accomplishments on a new page. In one single-spaced page or less for each, provide education and work experience, and describe accomplishments of the investigator(s) of this project over the past 10 years that are significant and pertinent to the proposed research. Follow this with a list of not more than 20 of their relevant or major publications. These should be formatted as in your Literature Cited.

Issues of Concern Statement – (Does not count against page limit). Address these, as appropriate to the plan. For those issues that are not applicable, list the title and note as “not applicable.” Where appropriate, identify the necessary reviews and/or permits, and give status and ID number or note that such have been requested.

- Animal Care
- Endangered Species
- National Environmental Policy Act: Research teams should consult their Area Environmental Specialist regarding the potential environmental impact of their research. ARS research projects are typically considered Categorically Excluded under the National Environmental Policy Act regulations. Project plans could then include the following statement: "On the basis that this Federal project is undertaken for the sole purpose of conducting research, this project is categorically excluded, in accordance with the National Environmental Policy Act (NEPA)."
- Human Study Procedure: Where appropriate (as, for example, plans in the Human Nutrition National Program) should document their compliance with regulations and policies regarding the use of human subjects.
- Laboratory Hazards
- Occupational Safety and Health
- Recombinant DNA Procedures: The IBC license number must be included in the project plan if there is work with recombinant DNA.
- Homeland Security: See the following web sites:
 https://arsnet.usda.gov/sites/ARS/Biosafety/default.aspx
 http://www.arsnet.usda.gov/HSS/index.htm
- Intellectual Property Issues (see details in Appendix 9)

Existing Specific Cooperative Agreements (SCAs) – (Does not count against page limit). An SCA related to the proposed Project Plan should be described in the Approach and Procedures section under the appropriate objective. The collaboration associated with the SCA should be documented either by a letter or an appended copy of the SCA.

Appendices – (Does not count against page limit). On a new page, list appendices by page number. Letters of collaboration are to be included in the appendix. Include scans of collaborator letters at the end of the project plan appendices.
3.4 Response to the Peer Review
Following review, OSQR sends results to the Area Director. Two documents accompany this. First, are the panel’s consensus recommendations (with expanding text boxes inserted for the scientist’s response). Second, is the “Action Class” Rating Worksheet (See Appendix 10: Action Class Worksheet) that lists each reviewer’s score and the overall rating of the project plan. Responses are required wherever an “ARS Response” text box has been inserted by OSQR. When revising a project plan be aware that there are NO PAGE LIMITS for the revised plan.

3.4.1 Action Class Rating
The possible Action Class Ratings and the level of response are as follows:

No Revision Required. An excellent plan: no revision is required, but minor changes to the project plan may be suggested.

Minor Revision Required. The project plan is feasible as written, and requires only minor clarification or revision to increase quality to a higher level.

Moderate Revision Required. The project plan is basically feasible, but requires changes or revision to the work on one or more objectives, perhaps involving alteration of the experimental approaches, in order to increase quality to a higher level and may need some rewriting for greater clarity.

Major Revision Required. There are significant flaws in the experimental design and/or approach or a lack of clarity which hampers understanding. Significant revision is needed.

Not Feasible. The project plan, as presented, has major flaws or deficiencies, and cannot be simply revised. Deficiencies exist in approach, experimental design, presentation, or expertise which make it unlikely to succeed.

3.4.2 How to Respond
Panel Recommendations will contain expandable text boxes labeled “ARS Response” for answering the queries and recommendations of the panel. Responses are needed ONLY where a response box is present. In most cases, scientists review and respond to the guidance provided. (See Appendix 11: Sample Peer Review Recommendations and ARS Responses) When comments involve recommendations or questions about project objectives, NPLs share responsibility for formulating the response.

There are no page limits for the revisions, but content and clarity are preferable to volume. Revised text should focus on the comments/recommendations and be of appropriate length. Responses must clearly indicate which components of the recommendation(s) were adopted, indicate if alternative changes were made, and if applicable, the rationale for not accepting a recommendation. A suitable response includes commentary or answer to the stated issue and notation (i.e., page number) where any changes based on this issue appear in the text. In the body of the plan revisions should be highlighted in **bold**.

While all recommendations must be carefully considered, there is no requirement that all be incorporated. It is entirely acceptable to disagree with a panel recommendation. *However, if a suggestion is not taken, appropriate justification is needed.* The response should be professional and convey a respectful difference of opinion.
Once the project plan has been revised, Lead Scientists obtain approval from their RL, and Center, Institute, or Laboratory Director. The revised project plan, and the ARS response form are then forwarded to the Area Director for approval. The plan and responses are then forwarded to OSQR with copies to the Office of National Programs (ONP). Changes to the assigned objectives must be approved by the relevant National Program Leader.

3.4.3 Post-Peer Review Signature Page
The post-peer review signature page is used once the project is ready for certification. Signatures are required of the RL; Center, Institute, or Laboratory Director; and Area Director (or their designee). As the highest line of authority in the decision for the conduct of research by a designated research team, the Area Director’s signature must be the last signature and must be original. See Appendix 4 for statements that must appear on this signature page.

3.4.4 Action Classes and Actions
The initial review of a project plan is analogous to the review of a paper by a peer-reviewed journal. Following review, panels may deem the plan sufficient (No Revision) as presented or provide guidance to the Scientific Quality Review Officer (SQRO) for specific issues (Minor or Moderate Revision scores). Alternately, a panel will reevaluate the plan following response and (perhaps extensive) revision by the research team (Major Revision or Not Feasible scores).

No, Minor, or Moderate Revision Scores
Plans receiving an Action Class rating of “No Revision”, “Minor Revision”, or “Moderate Revision” follow the above (Section 3.4.2) procedure and, once satisfactorily completed, can be approved and certified by the Scientific Quality Review Officer.

Major Revision Scores
If the Action Class after initial review is “Major Revision,” the plan must be revised and submitted for re-review by the dates indicated in the notification of the review outcome. Response is as noted in section 3.4.2 above. Any change to the plan objectives must be coordinated between the Area and ONP and this may necessitate issuance of a revised PDRAM. Revised plans will be re-reviewed by the panel and provided a second Action Class score and consensus review comments.

Not Feasible Scores
For Action Class scores of “Not Feasible”, the Area Director, Center, Institute, or Laboratory Director, RL (if applicable), Lead Scientist, and ONP collaborate to determine the appropriate course of action. It is presumed that, in general, these plans will be revised (Section 3.4.2), but final decision is at the discretion of ONP and the Area. Revised plans will be re-reviewed.

Panel Re-Review
Re-review is conducted by the original panel who are asked to assess if the revised plan adequately addresses concerns stated in the original review. Panels may not raise new issues that were not stated in their first review unless introduced by researchers in the revision. Re-review meetings typically are held 2 to 4 weeks after the due date for revised plans. Panels are discharged at the conclusion of a Re-review meeting and are not available for further meetings or review.
4 COMPONENTS OF PEER REVIEW

4.1 Panel Chairs and Panelists
Peer reviewers are scientific, technical, or industrial experts possessing relevant and extensive knowledge and experience. Participants are from outside of ARS and are free of conflicts of interest with regard to projects they review. On rare occasions, ARS scientists may serve as ad hoc reviewers or panelists.

4.2 How Panels Are Selected
The Office of Scientific Quality Review (OSQR) is responsible for selecting panel chairs, guiding panelist selection, and scheduling reviews. Panels are assigned groups of projects based upon input from the National Program Leaders (NPLs). Final decision on panels is the responsibility of OSQR.

Nominations for chairs are gathered from a wide array of sources, including ARS scientists or administrators, the National Program Staff, Deputy Administrators, and Area Directors. The Scientific Quality Review Officer (SQRO) selects the panel chair and may invite persons not otherwise suggested. Issues of expertise, geographic breadth, and gender or ethnic diversity are considered. Panel chairs receive an orientation on the peer review process, and background on the National Program.

4.3 Responsibilities and Administration
The work of panel chairs and panelists is essential to a successful peer review. Thus, significant effort is taken to assure that highly qualified individuals are invited to chair panels and to serve as panel reviewers.

4.3.1 Panel Chairs
Panel chairs select their panels, assign review responsibilities, and facilitate discussions. Candidate panelists are examined by OSQR for conflicts of interest (using a variety of resources, including the Conflict of Interest Lists provided by Lead Scientists). A final proposed list of panelists must be approved by the SQRO. The Officer’s approval considers: qualifications and research activity; conflicts of interest; geographic diversity of the panel; affiliation; and gender, race, and ethnic balance.

Panel chairs are charged with ensuring review quality, enforcing procedures, moderating panel discussions, and validating their panel’s final recommendations. After review, the chair provides a statement summarizing the review. The identity of the panel chair is part of the OSQR public record.

4.3.2 Panelists
Panelists assess the scientific and technical quality of research project plans. While their recommendations are not binding upon the Agency, their insights and suggestions are carefully considered, ensuring the quality and credibility of ARS’ overall scientific program. All panelists sign a Confidentiality Agreement (Appendix 12) to protect potentially sensitive information included in ARS research project plans. The identity of panelists is not part of the OSQR public record.
4.3.3 Panelist Preparation
Preparing panelists is an important part of the peer review. Essential to their work is a clear understanding of the unique nature of this particular review. This includes how this review differs from competitive reviews, its general similarity to manuscript review, the nature and origin of plan objectives, and the role of stakeholders, Congress, and others in setting research directions.

Conflicts of Interest
Peer reviewers who have a conflict of interest with a particular plan are excused from all considerations of that plan. Final decision on conflicts rests with the SQRO and is informed by the following guidelines. Panelists should not have a direct institutional affiliation with the research team or have direct financial interest in the outcome of the research. Conflicts include the following relationship with a member of the research team in the preceding 4 years: research collaboration (including sharing of research grant responsibility), or co-authorship. A direct student or postdoctoral relationship (including advising) with a member of the research team within the preceding 8 years is also considered a conflict of interest.

Confidentiality of Information
ARS research project plans may include information about the underlying research and existing or anticipated research results that are considered proprietary or confidential. **Reviewers must agree to not copy, quote, discuss, or otherwise use material from the proposal outside the panel review process.** (Appendix 12)

Reviewer Training
Panelists receive both written and detailed web-based training on the OSQR peer review process. This includes an overview of the process and its unique aspects. A presentation by NPLs and/or a copy of the relevant National Program Action Plan introduces reviewers to the scope and context of projects being reviewed.

4.4 Release of Information
Deliberations of the panel are confidential and panelists are anonymous. Recommendations represent the consensus views of the whole panel, are completed during the meeting, and validated by the panel chair before delivery to OSQR. The Officer and Peer Review Coordinator assure that recommendations are clear, complete, and reflective of the Action Class Score. Panel Recommendations and the Action Class are transmitted to ONP and Areas along with guidance on the timing and appropriate actions for response (See Section 3.4).

4.5 Re-Reviews
Re-review is a second peer review of the project plan performed by the original panel (see Section 3.4). Re-reviews are the expected corrective action when plans receive “Major Revision” or “Not Feasible” Action Class. **No other avenue to reconsider a score exists.** The research team is typically provided ten weeks to revise the plan for re-review by the panel. Dates for receipt of revised plans are firm and cannot be extended. If not officially postponed, plans not received in sufficient time to enable review by the panel will be deemed to have failed Re-review.

4.6 Panel Reports, Distribution of Scores
Each panel chair provides a statement summarizing the activities of their panel, general observations, and any recommendations for ARS with regard to the review process or the National Program. Statements become part of a report that includes general demographic information about
the panel and the distribution of scores. These reports are available to ARS employees upon request.

4.7 Ad Hoc Reviews
Ad hoc reviews are solicited outside of a regularly scheduled panel for the evaluation of project plans that are new, have been postponed, or have been significantly modified. Ad hoc reviewers are subject to the same confidentiality and conflict of interest policies as panel reviewers. As in the panel review process, Lead Scientists are required to formally submit their responses to ad hoc reviews through their Area Director (See Section 3.4). Where a single plan within a National Program is sufficiently unique as to not fit easily within one of the established panels, OSQR may elect to utilize this Ad hoc process for its review.

On occasion written reviews may be solicited for plans in a regular panel review where, in the opinion of the chair, additional outside expertise is needed to fully review a plan. Most typically this occurs where a plan has an “outlying” objective that differs significantly from the rest of the work. Such reviews are provided as supplemental written reviews to the panel. These Ad hoc reviewers do not attend the panel meeting or participate in scoring the plan.
5

ROLES AND RESPONSIBILITIES

5.1 Administrator’s Office
The ARS Administrator’s office provides executive-level oversight of the ARS Peer Review Process, communicating Agency policy and procedures for peer review to internal and external parties. Updates on the Peer Review Process are provided to the National Agricultural Research, Extension, Education, Economics Advisory Board, the Office of Management and Budget, and others, as requested. The Administrator’s Office represents ARS and appoints the Scientific Quality Review Officer (SQRO).

The Administrator’s Council of senior leaders in ARS advises the Administrator of emerging issues and policy needs associated with or affected by the Peer Review Process.

5.2 The Office of Scientific Quality Review
The goal of the Office of Scientific Quality Review (OSQR) is to create an environment in which ARS project plans receive objective, fair, and rigorous external peer review. OSQR manages the Peer Review Process, including policies, processes, and procedures, and has autonomy to establish processes and goals for the peer review. OSQR personnel report to the Associate Administrator for Research Operations and maintain strict independence, both from the Office of National Programs (ONP) and the Areas.

5.2.1 Scientific Quality Review Officer
The SQRO is a collateral duty position to provide professional oversight of Peer Review and panel operations. The SQRO enforces Agency policy and requirements, evaluates panel results, and transfers peer review recommendations.

5.2.2 Peer Review Program Coordinator
The Peer Review Program Coordinator is a permanent member of the OSQR staff and manages the day-to-day operations of the Peer Review Process. The Coordinator is responsible for communicating and enforcing Agency policy and requirements; oversees and supervises OSQR staff; performs analyses of review results; and collaborates with the SQRO on issues of communication, training, policy, and procedure. The Coordinator attends and guides review discussions and evaluates review responses making recommendation to the SQRO for their consideration.

5.3 Area Director’s Office
The Area Director (AD), Associate AD and/or Assistant AD work with the Research Leader (RL) and the Center, Institute, or Laboratory Director in assuring timely completion of the project plan. The Area Office also works with ONP to ensure that the project objectives and approaches are consistent with the Office of National Programs (ONP) goals. They also work through line managers to provide direction and instruction in addressing the recommendations and suggestions of peer reviewers. The Area Program Analyst (PA) is the point of control on proper execution of peer review policies and practices and tracks and monitors deadlines to ensure timeliness. Area Offices set and administer internal review procedures and practices to assure that plans are complete and that they meet high standards of technical merit and written clarity. While changes to objectives require concurrence of the National Program Leader (NPL), alterations to milestones are approved by the Area Office.
5.4 National Program Leader/Deputy Administrator
ONP, including National Program Leaders and Deputy Administrators, provide programmatic direction to lead scientists through line management. National Program Teams develop Program Direction and Resource Allocation Memos (PDRAMs) in consultation with the Area Office, RL, and Lead Scientist. National Program Teams review planned research to verify adherence to the Action Plan and programmatic direction. They provide recommendations to OSQR for panels, and provide materials and information about the National Program to panelists. *Any change to project objectives must be approved by the relevant NPL.*

5.5 Research Leader, Lead Scientists, and Research Team
The Lead Scientist works with the RL in developing a consensus with ONP on each project's direction and scope by documenting the project's relevance to the National Program Action Plan and scientific approach. The Lead Scientist/RL create the research project plan according to programmatic direction from ONP. The Lead Scientist submits the project plan in a timely manner to ensure adequate opportunity for internal review. After initial panel review, the Lead Scientist/RL review recommendations and make appropriate modifications, submitting them to the Area Director for review and approval.

5.6 ARS Focus Group on Peer Review
The ARS Focus Group on Peer Review provides a valuable conduit for communication between OSQR and ARS scientists to promote the effectiveness and enhance the quality of the ARS Peer Review Process. A representative from each Area, ONP, and the Area PAs serve on this group. They bring forward and discuss a variety of concerns related to project plans and peer review on behalf of their Area colleagues. Where appropriate they make recommendations on how to address issues. Thus they comprise an important and valuable mechanism for airing peer review related issues. The chair of the Focus Group is appointed by the Associate Administrator for Research Operations from among their membership.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Associate Administrator</td>
</tr>
<tr>
<td>AAD</td>
<td>Associate or Assistant Area Director</td>
</tr>
<tr>
<td>AC</td>
<td>Administrator's Council</td>
</tr>
<tr>
<td>AD</td>
<td>Area Director</td>
</tr>
<tr>
<td>ADODR</td>
<td>Authorized Departmental Officer’s Designated Representative</td>
</tr>
<tr>
<td>ARS</td>
<td>Agricultural Research Service</td>
</tr>
<tr>
<td>ARIS</td>
<td>Agricultural Research Information System</td>
</tr>
<tr>
<td>CRIS</td>
<td>Current Research Information System</td>
</tr>
<tr>
<td>DA</td>
<td>Deputy Administrator</td>
</tr>
<tr>
<td>LS</td>
<td>Lead Scientist</td>
</tr>
<tr>
<td>NAL</td>
<td>National Agricultural Library</td>
</tr>
<tr>
<td>NPL</td>
<td>National Program Leader</td>
</tr>
<tr>
<td>ODA</td>
<td>Office of the Deputy Administrator, ONP</td>
</tr>
<tr>
<td>ONP</td>
<td>Office of National Programs (formerly NPS)</td>
</tr>
<tr>
<td>OSQR</td>
<td>Office of Scientific Quality Review</td>
</tr>
<tr>
<td>PA</td>
<td>Program Analyst</td>
</tr>
<tr>
<td>PDRAM</td>
<td>Program Direction and Resource Allocation Memo</td>
</tr>
<tr>
<td>RL</td>
<td>Research Leader</td>
</tr>
<tr>
<td>SCA</td>
<td>Specific Cooperative Agreement</td>
</tr>
<tr>
<td>SQRO</td>
<td>Scientific Quality Review Officer</td>
</tr>
<tr>
<td>SY</td>
<td>Scientist Year</td>
</tr>
</tbody>
</table>
GLOSSARY

Action Class: Action Classes refer to the degree of revision peer reviewers believe project plans require. These provide an overall assessment of the quality of project plans.

Administrator's Council: The Administrator’s Council (AC) is composed of the Administrator, Associate Administrators, Deputy Administrators in ONP, Area Directors, and the Director of the National Agricultural Library. Senior Advisors include the heads of offices reporting directly to the Administrator.

Agricultural Research Information System (ARIS): An electronic system for the filing and retrieval of information about individual agricultural research projects. All ARS research projects are part of the ARIS and are assigned an ARS research project number (often incorrectly referred to as a “CRIS number”). See also: “Research project.”

ARS Resource Management System: A system for central management of resource assets to enhance and control program accountability within ARS.

Authorized Departmental Officer’s Designated Representative (ADODR): The ARS individual responsible for the proper conduct of an extramural research project.

Biohazard: Any microorganism (including, but not limited to, bacteria, viruses, fungi, rickettsiae, or protozoa), parasite, vector, biological toxin, infectious substance, or naturally occurring, bioengineered, or synthesized component of any such microorganism or infectious substance, capable of causing: (1) Death, disease, or other biological malfunction in another living organism or deterioration of food, water, equipment, supplies, or material; or (2) Deleterious alteration of the environment.

Category: An ARS system of administrative designations for groups of positions having generally similar characteristics, primarily for personnel and budgetary tracking purposes. Category has no legal or administrative significance outside of ARS. Some positions may perform duties from more than one category. ARS categories established for professional scientific positions are as follows:

Category 1 (Research Scientist): Permanent positions in which the highest level of work, for a major portion of time, involves personal conduct or conduct and leadership of theoretical and experimental investigations primarily of a basic or applied nature such as: determining the nature, magnitude, and interrelationships of physical, biological, and psychological phenomena and processes; and creating or developing principles, criteria, methods, and a body of knowledge generally applicable for use by others. Category 1 positions are SY positions.

Category 2 (Nonpermanent Research/Service Scientist): Professional scientific positions which are established on a nonpermanent basis, are filled through temporary or term appointments, and entail research and/or service science work. Examples are Research Associate, Research Affiliate, Visiting Scientist, and individuals reemployed in ARS after having retired from Category 1 or Category 4 positions.
Category 3 (Support Scientist): Professional scientist positions which function to provide direct support or service to one or more Category 1 or 4 positions. The work of such positions is characterized by responsible involvement in one or more, but not all, phases of research (particularly not the problem selection and definition phases); and responsible participation in analysis and preliminary interpretation of data (but not including responsibility for final interpretation and conclusion, which relate the results to the field of research involved). Examples include, but are not limited to: (1) Conducting literature searches; (2) Selecting procedures and conducting experiments; (3) Collecting and analyzing data or specimens; or (4) Preparing technical reports.

Category 4 (Service Scientist): Permanent positions whose incumbents either primarily or exclusively serve as project or program leaders over, or personally perform, work assigned to ARS involving professional scientific services to the public or to other governmental agencies, such as: Identification of animals, plants, or insects; Diagnosis of diseases; Mass production of plants, animals, or insects; Collection, introduction, and maintenance of germplasm or specimens; Vaccine production; Education, extension, or technology transfer activities; or Nutrient data and food intake surveys. Category 4 positions are SY positions.

Category 6 (Specialist): “Specialist” positions which perform scientific program management, administration and/or analytical duties and therefore require professional education and training. Examples are: Area Director, Center Director, Agricultural Administrator, and National Program Leader (NPL).

Certification: Written indication that a plan has satisfactorily completed peer review. Plans receiving initial or re-review scores of Moderate Revision or better may be revised in accordance with panel recommendations and, subject to review by the Scientific Quality Review Officer (SQRO), may receive certification that they have completed review. Only the SQRO may certify plans and only if, in their judgment, the responses and revisions received satisfactorily address or answer reviewer recommendations and concerns. The SQRO also is responsible for notifying Areas when a plan does not successfully complete review and cannot be certified.

Extramural Research: Research or research-related services from organizations or individuals outside ARS (e.g., through Specific Cooperative Agreement, contract, or grant).

National Program: The National Program in which an ARS Research Project has its greatest focus. Projects also may be related to other National Programs on a contributory basis.

National Program Action Plan: A document which addresses: 1) Rationale and purpose for a National Program; 2) The National Program’s background; 3) National Program components; 4) Anticipated products and/or potential benefits over 5 years; and 5) Research objectives by program component. The document incorporates issues raised by Congress, stakeholders, and researchers (ARS and non-ARS) associated with a particular National Program.

National Program Code: The National Program in which an ARS Research Project has its greatest focus. Projects also may be related to other National Programs.

National Program Leader (NPL): See Office of National Programs.
Office of National Programs (ONP): This staff serves the Administrator of ARS in developing and coordinating research plans and strategies on a national basis. The ONP, through its National Program Leaders (NPLs) sets National Program directions, establishes priorities, and allocates resources, in consultation with Area Directors, stakeholders, and scientists.

Panel Chair: The OSQR-appointed facilitator and manager of a peer review panel. See Chapter 4 for description of the Chair’s selection and responsibilities.

Peer Review: A process by which independent reviewers assess a research project plan for its scientific and technical quality and suitability of approach in an area of their expertise.

Peer Reviewer: An individual designated as qualified and capable of independently and critically assessing the scientific and technical quality of a research project plan, and who is free of real or perceived conflicts of interest (See Chapter 4).

Panel Recommendation: A document from a peer review panel that contains a critical review of an ARS research project plan. Its recommendations contain input from all members and reflect the consensus recommendations and comments of the panel.

Primary Reviewer: The lead peer reviewer assigned to perform a comprehensive written review of a particular research project plan based upon applicable scientific or subject matter expertise, and to lead panel discussions about that project plan.

Program Analyst: The control point and coordinators in Areas and at ONP for the timely and orderly implementation, management, and evaluation of research monitoring activities relative to the peer review process.

Program Direction and Resource Allocation Memo (PDRAM): A document developed by the National Program Staff in consultation with researchers; Research Leaders; Center, Laboratory, or Institute Director; and the Areas Office which allocates resources and identifies objectives within the National Program Action Plan that the Area Office directs to a specific project.

Project Plan: A document detailing the research need, objectives, appropriate hypotheses, experimental approaches, contingencies, collaborations necessary for accomplishment of the planned research, and the milestones and products expected from the successful completion of the research project, and developed according to guidelines set forth herein.

Reorganization: The establishment, discontinuance, consolidation, transfer, or realignment of work, functions, areas of responsibility, or geographical jurisdiction, and changes in official organizational titles.

Research Project: A phrase used to describe the category of ARS research projects that have been funded through ARS headquarters, and for which the project identification number ends with the character ‘D’. All D projects are peer-reviewed, unless deemed exempt. ARS Headquarters projects are further classified with ‘0500’ in the first four characters of the ARS research project number and are usually exempt because the research is short-term or is considered to be for demonstration purposes. Several other types of research projects exist, such as trusts (-00T) and specific cooperative agreements (-01S).
Research Unit (also Management Unit): The ARS unit where the research under consideration is performed.

Secondary Reviewer: A peer reviewer assigned to perform a comprehensive written review of a particular project plan based on applicable scientific or subject matter expertise. A secondary reviewer provides additional in-depth analysis and may act as the primary reviewer in the latter’s absence.

Scientist Year (SY): The effort of an ARS research scientist for 1 year. Fractional efforts in a given project are possible when a scientist is involved in more than one project during the course of a fiscal year. For purposes of determining page limits the total amount of SY time on a project is determined by totaling the full or partial efforts of all listed on the front page and dividing by the number of individuals there to arrive at the total amount of SY time on a project. The term is also commonly used within the Agency as a synonym for a research scientist.

Validation: Prior to submission of a Project Plan for review or return of a revised plan for Re-review, the National Program Leader must attest through signing the Validation Page that the plan addressed the agreed objectives and that the approaches are appropriate (Appendix 13).
APPENDICES

Appendix 1.
Authorities for Peer Review

Appendix 2.
Significant Change

Appendix 3.
Example of a Project Plan Cover Page

Appendix 4.
Signature Pages

Appendix 5.
Sample Project Flow Diagram

Appendix 6.
Hypothesis and Non Hypothesis Research

Appendix 7.
Milestones Table

Appendix 8.
Project Plan Checklist

Appendix 9.
Intellectual Property

Appendix 10.
Action Class Worksheet

Appendix 11.
Sample of Peer Review Recommendations and ARS Responses

Appendix 12.
Confidentiality Agreement

Appendix 13.
ONP Guidelines: Development and Validation of Project Plans

Appendix 14.
Postponement of Review
The 1998 Farm Bill

The Agricultural Research Extension, and Education Reform Act of 1998 (Public Law 105-185, Section 103d)

SEC. 103. RELEVANCE AND MERIT OF AGRICULTURAL RESEARCH, EXTENSION, AND EDUCATION FUNDED BY THE DEPARTMENT.

(d) SCIENTIFIC PEER REVIEW OF AGRICULTURAL RESEARCH-

(1) PEER REVIEW PROCEDURES- The Secretary shall establish procedures that ensure scientific peer review of all research activities conducted by the Department.

(2) Review panel required--As part of the procedures established under paragraph (1), a review panel shall verify, at least once every 5 years, that each research activity of the Department and research conducted under each research program of the Department has scientific merit and relevance.

(3) Mission area.--If the research activity or program to be reviewed is included in the research, educational, and economics mission area of the Department, the review panel shall consider--

(A) the scientific merit and relevance of the activity or research in light of the priorities established pursuant to section 102; and

(B) the national or multistate significance of the activity or research.

(4) Composition of review panel.--

(A) In general.--A review panel shall be composed of individuals with scientific expertise, a majority of who are not employees of the agency whose research is being reviewed.

(B) Scientists from colleges and universities.--To the maximum extent practicable, the Secretary shall use scientists from colleges and universities to serve on the review panels.

(5) Submission of results.--The results of the panel reviews shall be submitted to the Advisory Board.

Related Authorities

A number of other public laws relate to the activities of peer review and government advisory committees, in general. The following highlights the most relevant of these and how they impact the peer review process.

The Administrative Procedures Act

According to provisions of the Administrative Procedures Act, public comment solicited from the general public through the Federal Register, or other means, is often required prior to making significant decisions or taking significant actions. Public comment is open to all issues, whereas peer review is limited to the consideration of technical issues. Thus, peer review recommendations are not open to public involvement because they are from independent, subject-matter experts.
The Freedom of Information Act (FOIA)
External groups may obtain general, non-sensitive peer review data via procedures made in compliance with the ARS Freedom of Information Act (ARS 158.1 FOIA & Privacy Act Procedures; February 23, 1998). These procedures outline the limitations on release of certain types of information, such as names and addresses of peer reviewers, and the right for the OSQR to delegate access to individual research project plans to the Area Directors. A FOIA request is not necessary to obtain a general report from panel chairs, the distribution of scores, or a list of projects reviewed by a panel.

The Federal Advisory Committee Act (FACA)
The Federal Advisory Committee Act (FACA) requires non-governmental advisor’s opinions to be taken individually for formal and established federal advisory committees. However, since the ARS Peer Review Process does not require chartered peer review committees, individual action class scores from peer reviewers are averaged. The primary reviewer composes comments and recommendations that represent the panel’s consensus. The provisions of FACA do not apply for these final recommendations.

The Paperwork Reduction Act
To maintain a reasonable work load on peer reviewers, it is ARS’ policy that research project plans have page limits. Instructions encourage research teams to write concisely and comprehensively.

Title 44-Public Printing and Documents
Title 44 covers all record keeping and documentation rules for Federal agencies. Sec. 3101, “Records management by agency heads; general duties” directs all agencies to develop procedures to properly document agency decisions. The Office of Scientific Quality Review (OSQR) records the results of all peer reviews as a matter of Agency record. Individual peer review forms remain confidential in OSQR and are not distributed. No peer review-related documents are distributed externally; however, an Annual Report of Progress about the overall success of the Peer Review Process is available upon request.
Significant Change
Review of an Addition to a Plan

At times, a plan must undergo special review because a change to it is deemed to be outside the scope of the original review. Such review is uncommon. Most alterations or additions to plans are sufficiently close to the original plan that review of them is not considered necessary. The determination that the change is significant, requiring its review is by the Area and relevant National Program Leader (NPL), with appropriate concurrences. OSQR does not make such decisions. This review is Ad Hoc and based on written evaluations from at least two reviewers. Results and a synthesis of the reviews are compiled by the Scientific Quality Review Officer (See 4.7).

What is Significant Change?
While addition of a new objective is, in general, more likely to require Ad Hoc review this is not a rule. A new objective may still be within the scope of the already-reviewed plan. Similarly, calling an addition a sub-objective does not, of itself, exempt the addition from review. The test is whether the addition adds sufficiently in focus, technologies, methods, or other aspects such that it is outside what reasonable reviewers would consider the bounds of their original review. Finally, review of changes that are made to plans within two years of their next panel review is deferred until the full new plan is presented for its regular OSQR review (the two-year dates for each plan is part of the OSQR Peer Review schedule available at www.ars.usda.gov/osqr).

Research is a dynamic process and it is expected that directions and approaches will evolve over time. Essential to the creativity and innovation is the freedom to pursue directions that emerge as the work proceeds. It is, therefore, assumed that there is sufficient flexibility in approved plans to allow researchers such freedom without fear that each such change will “trigger” review.

A special case exists if a plan that has not been certified (either because it has failed or not otherwise completed review) is terminated and all or a substantial portion of the research is moved into a certified plan. The determination of the need for review of the addition requires particular attention. It is not envisioned that one could cast something as sufficient to constitute significant effort and then, before it completes review (or if it fails), be “redefined” as only a minor sub-objective within another plan. The perception to a reasonable outside observer is that this is a maneuver to avoid review of weak research. Thus, such actions are strongly discouraged and, in the unlikely event that they do occur there must be careful and thorough documentation of the justification of the decision not to review.

Review Document Format
Ad Hoc review of an already approved plan presents a unique situation for OSQR. The challenge is to provide reviewers an overall context of the plan but not the full details of the approved portions, lest they become distracted and focus more on those sections for which no review is needed. It is essential that the review (and document) focus on the newly added portions.

Added material should not be out of proportion, in size, to a normal project plan. Thus, OSQR recommends that when determining the size (pages) for added materials that researchers consider how much space they would have if the added objective were part of the whole project. In practical terms the added material for a new objective should be about 5-7 pages. There is, however,
a minimum amount of material that is needed to enable review. Accordingly added materials should present not less than 1-3 pages of background and 2-3 pages of approach and procedures. Above all, the amount should be a balance between efficiency and the need to provide sufficient information to enable review. Simply adding a few isolated sentences to an already-reviewed plan is unsatisfactory.

Organizationally the new material should be incorporated into the existing approved plan bolding the added material. The early sections (Project Summary, Need for Research, Objectives) should be for the whole plan with added portions in bold. This will provide important context for the work. Background and Approach and Procedures need only be for the added portions including earlier approved portions only if necessary to provide context (and then in grey).

Special treatment is needed for the Cover page, Objectives, and Milestones Table.

For the Cover, add the following (or equivalent) below the staff listing:

This plan presents background and approach for a new objective (cite number) added to a previously reviewed and certified ARS Project Plan. Project Summary, Need for Research, and Objectives are for the entire project, to provide context, but the Background and Approach and Procedures pertain only to the added objective.

For the Objective section, after each of the objectives already certified add the following in bold: “(Previously reviewed and approved)”. Then after the new (bolded) objective add: “(New, for review)”

The Milestones Table should reflect the work on the Objective/Sub-objectives being described. You may include those for the rest of the plan if they provide important context, but the new portions should be bolded or highlighted to make it evident that the other is provided solely for context. Alternately, you may wish to “grey” the milestones portions that have already been approved. The remaining sections of the plan should be sufficient to provide an understanding of the new material and where previously reviewed materials are included, bold any portions that are added. It is not necessary to include collaboration letters or other materials that are not relevant to the new material.

When the plan is received at the OSQR it will be examined and needed further notations added to assure that reviewers focus only on the new material. If there are questions as the material is developed please contact OSQR.
APPENDIX 3
Example of a Project Plan Cover Page

Project Plan
NP 108 Food Safety
August-September 2010

Old ARS Research Project Number
1234-56789-000-00D

Research Management Unit
Food Safety and Technology Laboratory

Location
Beltsville, Maryland

Title
Food Safety Technologies to Avoid Spoilage in Food Systems

Investigators
Fred Smith, Lead Scientist 1.0
Henry Wilcox 1.0

Non-ARS Investigators
Cynthia Newman .50 (Non-ARS)

Scientific Staff Years
2.50

Planned Duration
60 months
This project plan demonstrates clearly how the research team will conduct research in a manner appropriate for this area of research. The funds committed toward this project are sufficient to support the planned research.

______________________________________ ______________
Research Leader Date

This project plan was prepared by a qualified research team and demonstrates the research team’s best effort towards achieving the assigned research objectives.

______________________________________ ______________
Center, Institute or Lab Director Date

This project plan was prepared by a qualified research team and demonstrates the research team’s best effort towards achieving the assigned research objectives. All internal review and approval requirements have been met. This project plan is relevant to the Agricultural Research Service’s National Program [enter NP # and title] Action Plan and was prepared in accordance with the outlined objectives, experimental approach, and project duration previously agreed to by the National Program Team and Research Team. To validate the plan’s readiness for implementation and gain recommendations for improvement, the project plan is now available for peer review.

______________________________________ ______________
Area Director Date

These officials have not performed a scientific merit peer review. Their statements do not necessarily require expertise in the scientific subjects associated with this research. The approval to implement this project plan cannot be made without scientific peer review by the Office of Scientific Quality Review, ARS, USDA.

For labs that have a 3-tier organization structure (vs. the 4-tier organization that is implied on the signature page), you may combine the first and second signature block. If your lab uses a different title for the Research Leader or Center Director, you may edit the title lines accordingly.
This project plan was revised, as appropriate, according to the peer review recommendations and/or other insights developed while considering the peer review recommendations. A response to each peer review recommendation is attached. If recommendations were not adopted, a rationale is provided.

______________________________________ ______________
Research Leader Date

This final version of the project plan reflects the best efforts of the research team to consider the recommendations provided by peer reviewers. The responses to the peer review recommendations are satisfactory.

______________________________________ ______________
Center, Institute or Lab Director Date

The attached plan for the project identified above was created by a team of credible researchers and externally reviewed and recognized by the team’s management and National Program Leader to establish the project’s relevance and dedication to the Agricultural Research Service’s mission and Congressional mandates. It reflects the best efforts of the research team to consider the recommendations provided by peer reviewers. The responses to the peer review recommendations are satisfactory. The project plan has completed a scientific merit peer review in accordance with the Research Title of the 1998 Farm Bill (PL105-185) and was deemed feasible for implementation. Reasonable consideration was given to each recommendation for improvement provided by the peer reviewers.

______________________________________ ______________
Area Director (original signature required) Date

For labs that have a 3-tier organization structure (vs. the 4-tier organization that is implied on the signature page), you may combine the first and second signature block. If your lab uses a different title for the Research Leader or Center Director, you may edit the title lines accordingly.
This project plan was revised according to the recommendations made by the panel, and demonstrates how the team will conduct the research. The funds committed toward this project are sufficient to support the planned research.

______________________________________ ______________
Research Leader Date

This project plan was prepared by a qualified research team and demonstrates the research team’s best effort towards achieving the assigned research objectives.

______________________________________ ______________
Center, Institute or Lab Director Date

This project plan was prepared by a qualified research team and demonstrates the research team’s best effort towards achieving the assigned research objectives. All internal review and approval requirements have been met. This project plan is relevant to the Agricultural Research Service’s National Program [enter NP # and title] Action Plan and was prepared in accordance with the outlined objectives, experimental approach, and project duration previously agreed to by the National Program Team and Research Team. To validate the plan’s readiness for implementation and gain recommendations for improvement, the project plan is now available for peer review.

______________________________________ ______________
Area Director Date

These officials have not performed a scientific merit peer review. Their statements do not necessarily require expertise in the scientific subjects associated with this research. The approval to implement this project plan cannot be made without scientific peer review by the Office of Scientific Quality Review, ARS, USDA.

For labs that have a 3-tier organization structure (vs. the 4-tier organization that is implied on the signature page), you may combine the first and second signature block. If your lab uses a different title for the Research Leader or Center Director, you may edit the title lines accordingly.
This project plan was revised, as appropriate, according to the peer review recommendations and/or other insights developed while considering the peer review recommendations. A response to each peer review recommendation is attached. If recommendations were not adopted, a rationale is provided.

______________________________________ ______________
Research Leader Date

This final version of the project plan reflects the best efforts of the research team to consider the recommendations provided by peer reviewers. The responses to the peer review recommendations are satisfactory.

______________________________________ ______________
Center, Institute or Lab Director Date

The attached plan for the project identified above was created by a team of credible researchers and internally reviewed and recognized by the team’s management and National Program Leader to establish the project’s relevance and dedication to the Agricultural Research Service’s mission and Congressional mandates. It reflects the best efforts of the research team to consider the recommendations provided by peer reviewers. The responses to the peer review recommendations are satisfactory. The project plan has completed a scientific merit peer review in accordance with the Research Title of the 1998 Farm Bill (PL105-185) and was deemed feasible for implementation. Reasonable consideration was given to each recommendation for improvement provided by the peer reviewers.

______________________________________ ______________
Area Director (original signature required) Date
APPENDIX 5
Sample Project Flow Diagram

Sample Flow Chart
A Useful addition to Objectives or Approach and Procedures
(Sample used by permission of authors)

The flow chart below describes interrelationships of research approaches, objectives, procedures, and personnel within this project and between ARS projects.

How a chart helps:
1. Shows who is working on each objective (but be sure you haven't said that a 0.1SY researcher is responsible for a large part of the work!).
2. Illustrates how the whole project team relates (include vacant positions and back up your need for a person with the expertise to do this in the text of your plan).
3. Demonstrates a "path to success" (more than saying who will do what, it shows how each contributes to the "flow" of the research).
4. Helps to integrate the objectives showing how they relate to one another. Where there are subobjectives be sure that it is clear how they fit.

Producing such a diagram takes time, and care to be sure that your narrative confirms and expands upon this. If you say one thing here and something else in your narrative then this can hurt instead of help!
APPENDIX 6
Hypothesis vs Goal-driven Research

Most scientific research is hypothesis-driven. That is, it seeks to address a specific, measurable, and answerable question, which may be intermediate to its ultimate objective, but essential to attaining the same. Where a hypothesis is inappropriate a clearly stated goal may be used. In either case the intent is to show focus and direction for the work.

Hypotheses
A well constructed hypothesis has several characteristics: it is clear, testable, falsifiable, and serves as the basis for constructing a clear set of experiments that will allow either its acceptance or rejection. One of the most frequent comments OSQR receives from reviewers is that plans contain hypotheses that do not meet these standards. There are several potential areas of difficulty (thanks to Dr. Steve Shafer, Midwest Area Director):

Too Complex:
Hypothesis statements that contain words like “and” and “or” are essentially “compound hypotheses. This makes testing difficult if not impossible because while part may be true the other may not be so.

Imprecise:
Hypotheses should be definite statements for which the answer can be confirmed or rejected. Use of “may”, “might”, “could” make the statement equivocal and render it impossible to reject the hypothesis (it may be true even if your result says it’s not!).

Misdirected to Researcher:
The hypothesis is a test that tells you something about what you are researching. It does not address your capabilities. Example: “Discovering the mechanism behind X will enable us to better detect the pathogen.” This tests the ability of the researchers to take information and use it. It is a result of successful hypothesis driven research. Rather the hypothesis should focus on the experimental system.

Statements of the Obvious:
“Disease results from expression of genes for virulence in the genes for susceptibility in the host.” Actually this also is too complex (see the “and”?). Instead the hypothesis should focus on a particular expression of a particular gene or set of genes.

Global Statements:
“Quantifying X will provide significant increases in income for industry.” This is utterly untestable in 5-year plan and is really a potential outcome, not a hypothesis.

Goals
Some ARS research is not hypothesis-driven. This work may include model development, plant breeding, database development, high throughput genomics, service work, and engineering. Even where research is not guided by a hypothesis, there should be a clearly articulated goal to assure the reviewer that the work has a clear direction and is not a “random walk.” For example, plant exploration is not, typically, hypothesis-driven, but the work should have a clearly stated set of goals that will guide it over the research period.
Resources
There is a wealth of Internet resources on how to prepare clear, testable hypotheses or focused goals. In addition many areas have statisticians available who can work with project teams to construct hypotheses and, help you assess whether your research might not be better focused by adding them. In general, OSQR has found that reviewers find equal fault with plans that omit hypotheses where they are appropriate and with those that artificially “squeeze” in one of the above examples.
APPENDIX 7
Milestone Table Format

The goal of the Milestone Table is to present a summary of the project in a form that enables reviewers to readily see the plan of work and the intended path to achieving identified project goals. In addition, it can be used to link to Annual Report of Progress (421’s) and Performance Plans. The table is a dynamic representation of the project that captures the important progress and products derived over the project lifecycle. In this way it can become a useful tool for project management after the OSQR peer review. The table may be expanded by copying any relevant sections.

On the next page is a re-organized format for the Milestones Table released by the Peer Review Focus Group in 2014 to allow additional space for the elements. If your plan contains an earlier format you do not need to change it. Either this or the earlier version is acceptable. Both this and the earlier version are available on the OSQR website: http://www.ars.usda.gov/research/docs.htm?docid=1299ww.ars.usda.gov/osqr

You may use either.

Note that boxes in the tables expand to allow for additional text. We suggest using a narrow font not less than 9 points, such as Arial Narrow, to better utilize space.

Milestones should be specific, quantifiable, measures of progress. They are NOT outcomes of research such as publications or databases. These latter are both anticipated products but should be specific as to their relevance (e.g., “Peer reviewed paper on…”; “Database for…”; “Standards for…”).

The Anticipated Products should be similar to or reflect those summarized for the work in the Need for Research section of the plan.

The Progress/Changes column has been reduced to allow more space for developing the parts relevant to the plan. If the Milestones Table is used after review as a management tool, then this can be enlarged. Note is to remind reviewers why this column is blank in the plan and should remain.
Milestone Table Format

The goal of the table is to present a summary of the project in a form that is easily used to link to Annual Report of Progress (421’s) and Performance Plans for each scientist. The intent of the table is to be a dynamic representation of the project.

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Project No.</th>
<th>National Program (Number: Name)</th>
<th>Objective</th>
<th>NP Action Plan Component</th>
<th>NP Action Plan Problem Statement</th>
<th>Subobjective</th>
<th>Goal/Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SY Team</th>
<th>Months</th>
<th>Milestone</th>
<th>Anticipated Product</th>
<th>Progress/Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Goal/Hypothesis

<table>
<thead>
<tr>
<th>SY Team</th>
<th>Months</th>
<th>Milestone</th>
<th>Anticipated Product</th>
<th>Progress/Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This column for management after review.
INSTRUCTIONS FOR COMPLETING MILESTONES TABLE
Do not include these instructions in your plan.
You may obtain a blank Milestones Table at www.ars.usda.gov/osqr

Objective: Spell out the objective including its number. It should match the text of the plan.

NP Action Plan Component: From the National Program Action Plan

NP Action Plan Problem Statement: From the National Program Action Plan

Subobjective: This should match the plan. Omit if your plan does not contain subobjectives.

Goal/Hypothesis: This should be as stated in the plan.

SY Team: Initials of the project team members (from the front page) contributing to the specific hypothesis/goal and/or significant collaborators (in which case footnote with name and affiliation). If a vacancy exists, identify the responsibilities for this position in the table.

Months: Month spacing should be yearly although you may alter the first and/or last to coincide with fiscal years or Annual Report. If so, please footnote this so reviewers understand that it is intentional and for what purpose.

Milestone: Milestones should be specific, measureable indicators of progress. Publications are products, not milestones.

Anticipated Product: Specific products are those outputs that provide results, information, service, etc. to individuals, a group, or the scientific or stakeholder community. Publications are only one type of product. Simply stating “publication” is insufficient. Indicate if it is scientific or to what audience (e.g., “Peer reviewed publication on Maize genomics”). There should be a strong link between products and the stated expected outcomes.

Progress/Changes: This column is for management after the plan is initiated. It should be left blank except for the notation presently there so that reviewers know that it is intentionally not completed.
APPENDIX 8.
Project Plan Checklist

Lead scientists are responsible for writing project plans for their prospective research in accordance with the peer review schedule designated for their primary national program. They must create a plan that displays scientific merit, creativity, and excellence. Success in writing a plan depends on attention to production of a clear, understandable, and logical flow through the written document. The project plan should be a seamless and clear presentation of the work to be undertaken.

Well-crafted project plans cannot be prepared overnight. They must be clear, thoughtful narratives that convey the objectives and experimental plans for the work in a way that showcases the unique expertise of the project team. Preparation of plans is a team effort that requires care and attention equal to that needed to write peer-reviewed manuscripts or competitive research proposals.

Outlier or Independent Objectives
It is understood that in some plans the objectives may be grouped for similarity but the work on each is conducted independently by different investigators. There also are plans where a single objective differs significantly and does not readily fit with the rest. It is important that these situations be clear to the reviewers at the outset and, thus, it is strongly recommended that they be addressed in the Objectives section. If research on objectives proceeds independently then that should be explained. If an outlier objective is placed within the plan but is not an integral part of the work, it should be so noted (and the reason for its placement in the plan briefly stated). In so doing you will minimize panel criticism that the plan is not sufficiently integrated among its parts or that an outlier objective is unrelated and should be dropped.

Checklist
The following checklist is intended as a guide in the development of a project plan. Additional information may be found at www.ars.usda.gov/osqr.

General preparation:
- Read this Manual.
- Attend Web-based training provided by the Office of Scientific Quality Review (OSQR) for your National Program. You will receive information about this shortly after receipt of your Program Direction and Resource Allocation Memo (PDRAM).
- See the OSQR Web site (www.ars.usda.gov/osqr) for additional resources.

Preliminary Planning After Receiving the PDRAM:
- Note deadlines and allow sufficient time for thorough internal review and revision.
- Update Conflict of Interest lists.
- Confirm collaborations with current or potential collaborators. The body of your plan (in Approach and Procedures) will need to show how these fit into the work and a letter confirming their role and commitment will need to be appended to the final plan. Where appropriate a Memorandum of Understanding or Specific Cooperation Agreement may be provided in place of a letter to document the collaboration.

Project Plan Development:
This process should begin with discussion about the PDRAM, but no later than after its receipt. It is important that the plan present a clear path through the research that documents the contributions of the team and collaborators. An outline can be a useful first step in the preparation of a plan. A well-prepared outline captures the overall direction and approach for a plan and serves as a guide to further development of the plan.

- Send your draft plan to colleagues for informal review. Plan to have a draft plan several weeks early to allow time for review by colleagues, associates, and line management; and to provide sufficient opportunity for revision (this review may already be a part of your Area’s process).
- Provide plan to line management in sufficient time for their review and sign-off. Areas will provide deadlines for accomplishing this and to allow for revisions that may be requested.
- **Thoroughly proofread** plans. The most frequent problems with low-scoring plans relates to lack of clarity, poor, or awkward writing. Allow time to assure that your plan presents a clear and readily understood path.
- **Check your Hypotheses or Goals.** Panels frequently have difficulties with hypotheses that are weak, trivial, self evident, or better stated as goals. Similarly, they may find fault if a general goal is stated where a hypothesis would provide greater clarity and direction. If available an Area statistician can help assure that you have formulated clear, strong, testable hypotheses and/or focused goals.
- **Assure statistical soundness.** How have you arrived at the appropriate sample size? How will you analyze your data? It is generally not sufficient to say something like “Data will be analyzed using standard statistical procedures.” The reviewers will want to assess if the ones you use are appropriate. Again, consulting a statistician can be most important.

Internal/Informal Peer Review Networks:
Examine your plan for clarity of presentation and seek review by others to assure that it is a clear, easily understood, presentation. The most successful project plans are those that have been examined by others, both inside and outside the Agency prior to submission.

Review of the project plan by colleagues helps to ensure the plan is clearly written, experiments are adequately described, and state-of-the-art approaches and techniques are proposed. Panel members often cite project plans written by multiple scientists as lacking a “seamless” approach. If necessary, you may alter the general format of the plan (without eliminating requested information) to produce a more readable draft. In particular, plans with several objectives or sub-objectives may be better served by an organization that brings together the background and approach for groups of related portions so that reviewers are not required to find disparate pieces spread throughout your plan.

Project Plan Revision and Response to the Review:
Upon receiving the peer review results, meet with the research team and develop reasonable and professional responses to recommendations. Note: If the project plan receives a ‘major revision’ or ‘not feasible’ action class rating, consult first with management and ONP to determine the next steps.

- Develop a final revised plan in accordance with instructions (see Chapter 3).
 - Address each area where an “ARS Response Box” is found in the Panel Review Comments received from OSQR.
- Make appropriate changes to your project plan in **Bold**.
 - If revision includes changes to the plan objectives, contact ONP as a new PDRAM may be required.
 - Secure line management approval of your revised plan.
 - Upon receiving a certification from OSQR, the program analyst will coordinate the creation of the new ARS Research Project (AD-416/417).
APPENDIX 9.
Intellectual Property

In developing and executing research projects in ARS, it is critical to understand the role of intellectual property (IP) and its impact on research performance and technology transfer.

In planning and conducting research IP may impact the work and the ultimate use of resulting technologies. These include confidentiality of information; the proprietary nature of materials, processes and/or research tools; and intellectual property issues associated with collaborations.

Definitions

Intellectual Property: “… applies to any product of the human intellect … whether or not the subject matter is protectable….” These include “invention, discovery, technology, creation, development, or other form of expression of an idea.” (excerpts from Technology Transfer Desk Reference, Federal Laboratory Consortium, 2003)

Technology Transfer: The process by which research results are adopted and put into practice.

Developing the Project Plan

It is important to recognize and identify potential IP issues in developing the project plan to avoid potential conflicts in using the results of the research or difficulties in ultimately transferring the technology. If materials or methods/processes used are proprietary or protected by patents or other means, it may limit the ability to transfer the technology to end users and/or it may increase the cost for customers. For guidance on identification or management of IP issues, contact Patent Advisors and Technology Transfer Coordinators or the ARS Office of Technology Transfer.

Materials and Experimental Procedures: In developing a project plan and in selection of experimental methods, the materials and/or methods proposed for the research approach should be reviewed to identify any potential IP issues, and, if so, to identify the owners of the technology. Technologies to be used that are patented or proprietary should be clearly identified, including ownership, and, if necessary, Material Transfer Agreements should be initiated. Consideration should be given to the impacts of using protected technologies on the outcomes of the research and, if appropriate, alternatives should be identified.

Scientific Background and Literature Review: In conducting a literature review for the proposed project, it is useful to check the citations of the publications for references to patents that may be relevant to the materials or procedures of the proposed research approach. If appropriate to the field of research, a patent search should be performed to identify any potential IP issues that may be associated with the use of proprietary information or materials. Publication of research results in journals does not preclude the existence of associated patents, even if they are not referenced in the publication.

Collaborations: Collaborative efforts may include, but are not limited to, development of the research plan, cooperative research activities, and/or transfer of materials to or from ARS. To preserve any potential IP rights, Confidentiality Agreements should be used when developing the project with collaborators or sharing new or unpublished ideas or
data. Use of Cooperator’s confidential information in the research project may limit the ability to publish or transfer the results of the research. Such issues should be discussed in advance and appropriate Confidentiality Agreements or Research Agreements put in place prior to initiation of the research. In addition, if materials will be transferred to or from ARS, a Material Transfer Agreement should be used if these are patented or proprietary. If there is a potential for IP to result from the project, cooperative research agreements (e.g., Memorandum of Understanding, Trust Agreement, Specific Cooperative Agreement, or Cooperative Research and Development Agreement) should be developed to define management of associated intellectual property issues.

Transferring the Technology

Anticipated Products and Customers of the Research:

The Federal Technology Act of 1986 assigns each ARS scientist the responsibility for technology transfer. Because ARS is a publicly-funded Federal institution, the transfer of ARS technology to customers is the primary consideration in determining whether or not to protect any inventions that result from ARS research. Examples of technology transfer include demonstrations, presentations, publications, utility or plant patents, plant variety protection certificates, and biological material inventions. ARS protects intellectual property only if it enhances or is necessary for successful technology transfer. Consult with ARS Patent Advisors and Technology Transfer Coordinators for evaluation of potential IP to determine the most appropriate mechanisms for transfer of new ARS technologies.

In developing a project plan and identifying customers of the research, there should be an evaluation of the potential outcomes and products of the research which identifies the ultimate users; how technology will be transferred; if further development or protection will be needed to transfer the technology; if there are regulatory actions or approvals needed, and if so, appropriate steps to be taken to prevent premature disclosure of confidential information and to protect potential IP rights (Confidentiality Agreements, Material Transfer Agreements, Cooperative Research Agreements). Avoiding premature disclosure is critical because there may be substantial overseas markets for U.S. companies developing products from ARS technologies. Any enabling oral or printed disclosure of an invention eliminates patent options in foreign countries unless an application has already been filed in the United States. Web page publication of meeting abstracts, field days, and open house poster sessions can potentially constitute a disclosure. Scientists should consult with their ARS Patent Advisor in advance.

For further assistance

To maximize the ability to perform research and to facilitate technology transfer, it is important to be aware of current and emerging technologies and to identify protected intellectual property issues associated with them. Likewise, it is critical to evaluate research results for potential IP and to work with the Office of Technology Transfer to select the optimal vehicles for transfer of new technologies to our customers. For further information and assistance see:

Patents, identifying background IP, how to do a patent search, patentability issues:
ARS Patent Advisors

Confidentiality Agreements, Material Transfer Agreements, Research Agreements:
ARS Technology Transfer Coordinators
APPENDIX 10:
Action Class Rating Worksheet

ACTION CLASS RATING WORKSHEET

<table>
<thead>
<tr>
<th>United States Department of Agriculture</th>
<th>Project Plan Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Research Service</td>
<td></td>
</tr>
<tr>
<td>Office of Scientific Quality Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>National Program:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Review Dates:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Quality Review Officers:</td>
<td></td>
</tr>
<tr>
<td>The Officer whose signature appears</td>
<td></td>
</tr>
<tr>
<td>below agrees to treat the contents of</td>
<td></td>
</tr>
<tr>
<td>this Plan as confidential and that no</td>
<td></td>
</tr>
<tr>
<td>basis for a conflict of interest has</td>
<td></td>
</tr>
<tr>
<td>been found. Final determination of</td>
<td></td>
</tr>
<tr>
<td>conflicts of interest, which are</td>
<td></td>
</tr>
<tr>
<td>outlined in the Peer Review Guidelines</td>
<td></td>
</tr>
<tr>
<td>for ARS Panel Reviewers, resides with</td>
<td></td>
</tr>
<tr>
<td>the OSQR.</td>
<td></td>
</tr>
</tbody>
</table>

SEE GUIDELINES FOR REVIEWING ARS RESEARCH PROJECT PLANS

Individual quality ratings translate into the following numerical values:

- **No Revision Required = 8 points**
 - No revision is required, but minor changes to the project plan may be made.

- **Minor Revision Required = 6 points**
 - The project plan is basically feasible as written but requires some revision to increase quality to a higher level.

- **Moderate Revision Required = 4 points**
 - The project plan is basically feasible as written but requires moderate revision in the Approach and Procedures of one or more objectives, perhaps involving changes to the experimental approaches, in order to increase the quality to a higher level. The project plan may also need some rewriting for greater clarity.

- **Major Revision Required = 2 points**
 - Substantial revision in the Approach and Procedures of one or more objectives is necessary, but the project plan should be sound and feasible after significant revision.

- **Not Feasible = 0 points**
 - The project plan has major flaws or deficiencies, and cannot be simply revised to produce a sound project. If the project is not terminated, a complete redesign and rewrite are required.

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Quality Rating</th>
<th>Numerical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total # of Reviewers:

Total Rating: 0

Average Rating:

EVALUATION

- **No Revision Required (≥ 7.0)**
- **Minor Revision Required (5.1 to 6.9)**
- **Moderate Revision Required (3.1 to 5.0)**
- **Major Revision Required (1.1 to 3.0)**
- **Not Feasible (<1.1)**

Per project plan, individual panelist quality ratings will be tallied, divided by the total number of panelists (panel members, plus panel chair, excluding ad hoc reviewers), and rounded to the nearest tenth to arrive at a final project score. Final project ratings are shown above.

Scientific Quality Review Officer

Date
APPENDIX 11.
Sample of Peer Review Recommendations
and ARS Response

Project Title: Development of Gentle Intervention Processes to Enhance the Safety of Heat Sensitive Foods

Lead Scientist: ARS Scientist National Program: 108 Food Safety-Postharvest

1. Adequacy of Approach and Procedures: Are the hypotheses and/or plan of work well conceived? Are the experiments, analytical methods, and approaches and procedures appropriate and sufficient to accomplish the objectives? How could the approach or research procedures be improved?

Comments:
1. The hypothesis that... condensing steam will inactivate bacteria on the surface of solid foods without causing thermal damage if the interfering air and water layers on the surface are removed by vacuum and the condensed steam is removed to evaporatively cool the surface... is scientifically sound and workable. Indeed, the group has developed and tested the technology with a pilot plant prototype and chicken pieces, which indicated a 2 log reduction of LM in initial studies. Further refinement will involve retrofitting the prototype to treat the whole carcass (surface, visceral cavity) and development of a field VSV pasteurization system. Additional studies will focus on ready-to-eat meats, specifically hot dogs (and the known LM hazard) and catfish, with both aspects under appropriate CRADAs. The former is a high priority research need for food safety regulatory agencies, and the contingency inactivation studies “in-package” (within plastic) should probably be elevated to practice in the proposal. The portion of the proposal indicating the development of models and process simulations, towards determining the mechanism of VSV inactivation, is appropriate, but of lower priority in the overall project schema. Any modeling aspect should be focused on process delivery and eventual development and validation of performance standards to support food safety.

2. The controversial theory that “pasteurization” of heat-sensitive foods is accomplished by applied voltage or magnetic field and, perhaps, can be demonstrated with the incumbents’ “uniquely modified RF heater” is the overall working hypothesis for this objective. This entire objective is very high risk, but the payoff is potentially high. The proposal articulates a clear, stepwise protocol. The modified RF “heater” appears to be designed to offset the often-stated criticism towards the non-thermal theories that precise measurements of the time-“temperature” history and its spatial variations are lacking.

Recommendations:
1. Objective 1 - The proposal needs to incorporate a more specific explanation of the steps needed to determine the effectiveness of the VSV treatment. Will naturally occurring pathogen populations be known or established?

ARS Response: We added more detail to the plan of work (see pp 12-13). Specifically, we will use Null hypothesis to determine statistically significant differences between the treated and con-
Control, within 1 day, across 3 days, over weeks and seasons. Each company will have their own specific tests to run to determine effectiveness. We will test for *Campylobacter* and generic *E. coli* at Athens. One company has expressed an interest in looking at *Salmonella*. At that plant, they will test for it. It is the objective to develop the process for commercial adoption. We expect individual companies will do more specific tests and share the data. In all cases in which it is feasible, we will try to establish the pathogens present.

2. Objective 1 – Although the primary focus of the research may be on reducing microbial populations on the surface of solid foods, the evaluation of the process should incorporate measurements of the process impact on product quality; color, texture, etc.

ARS Response: We agree, but that is best left to the companies to do. They are the 'product specialists' and are much better equipped to do those studies. They have the equipment, experience and personnel to do them. We added text to indicate that industry will do these tests as part of our collaborative arrangements (see p. 13). The research on this objective is at the developmental stage. We need industry to cooperate in testing at processing plants. We will supply the equipment and expertise on the VSV intervention processor. We will do the microbiology evaluation although industry will undoubtedly do their own microbiology evaluation as well. Industry is best equipped to evaluate the consumer acceptance of the product. We are in a better position to do basic research into the mechanism and model the process.

3. Objective 1 – The portion of the proposal on models and simulation of the bacterial “destruction” process needs to be developed with much more specific information on the approach to be used and the outcomes to be achieved. The models should focus on process delivery and eventual development and validation of performance standards to support food safety.

ARS Response: We agree. This research objective belongs to a high level vacancy, as yet unfilled. However, we added a detailed research plan based on our conception (see pp 18-19). It is a difficult research assignment and we hope to hire a highly qualified engineer to do it.

4. Objective 2 – The hypothesis of the research should be reversed to prove that a non-thermal influence on inactivation of microbial cells does exist.

ARS Response: We concur and changed the order as suggested (see p. 19).
For Review of ARS Research Project Plans by the National Program Panel:

For Review of a Specific ARS Research Project Plan:

THIS AGREEMENT is by and between the US. Department of Agriculture, Agricultural Research Service (hereinafter ARS), and (hereinafter Reviewer).

(Name of Reviewer)

WHEREAS, in order for Reviewer to assess the scientific merit of ARS Research Project Plan(s), (hereinafter project plan(s)), ARS may have included detailed information in the project plan(s) about the underlying research and existing and anticipated research results that is considered by ARS to be proprietary or confidential information (hereinafter Confidential Information); and

THEREFORE, Reviewer agrees to maintain in complete confidence and secrecy the Confidential Information contained in the project plan(s), will not disclose directly or indirectly the Confidential Information to others, and will not use or make use of the Confidential Information, except in connection with said reviews.

For purposes of this Agreement, such Confidential Information shall not include:

1. Information already known to Reviewer;
2. Information which Reviewer receives from a third party who has not obtained such information directly or indirectly from ARS;
3. Information that has become public knowledge through no actions of Reviewer; or
4. Information received after the disclosure from a third party having the right to the information and who does not impose a confidentiality obligation on Reviewer.

This Confidentiality Agreement shall remain in effect for five years from the Effective Date.

Signatures:
Peer Reviewer: ___________________________ Date _____________________
ARS Representative: ___________________________ Date _____________________

Please fax this form to OSQR at 301-504-1251 as soon as possible. Then mail the original to the address below.

Public Burden Statement: According to the Paperwork Reduction Act of 1995, an Agency may not conduct or sponsor, and a person is not required to respond to a collection of information unless it displays a valid OMB number. The valid OMB control number for this information collection is 0518-0028. The time required to complete this information collection is estimated to average 30 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.
A National Program (NP) is a set of research projects directed toward common goals to solve agricultural problems of high priority. The role of the Office of National Programs (ONP) is to maintain relevancy of research programs, and the role of line management is to ensure the quality of the research activities that make up those programs.

- The National Program Team, with stakeholder/customer/scientist input, identifies high priority problems and develops an Action Plan integrating scientific and stakeholder needs into a program research strategy for the 5-year cycle.

The Action Plan establishes the basis of the necessary dialogue between ONP and scientists and between Deputy Administrators (DAs) and Area Directors (ADs) that defines research approaches to solve problems that are relevant to the needs of U.S. agriculture.

- The DA and NP Team discuss relevant portions of the Action Plan with each AD and Center Director (CD)/Research Leader (RL)/Lead Scientist (LS), as appropriate, to identify the capacity, capabilities, and resources available, as well as the potential contributions of each project to solve problems addressed by the Action Plan, resulting in a resource strategy for research projects.

The dialogue enables ADs and RLs to communicate any concerns with proposed research re: available resources -- monetary, facility, or staff. The Resource Strategy for research projects defines the most effective use of available resources and is compiled by component in the Resources section of the Action Plan. This dialogue is essential for developing the Program Direction Resource Allocation Memo (PDRAM).

PDRAM

The PDRAM outlines the project’s objectives and linkages to the National Program Action Plan.

- The National Program Leader (NPL), through the DA, forwards the PDRAM identifying new project objectives to the AD with a copy to the Office of Scientific Review (OSQR), who in turn, transmits an implementation letter to the relevant LS, usually including the PDRAM.

While objectives must be explicit, they should allow sufficient latitude for the creativity and insight of the SY(s) in the development of the project plan.
Within 2 weeks of receiving the PDRAM, the LS submits to OSQR, through the RL/CD/AD, the Conflict of Interest Statement (COI) for each investigator assigned to the project.

Submission of the COI meets the functional needs of OSQR.

PROJECT PLAN

The Project Plan is a stand-alone document that enables reviewers to evaluate the merit and feasibility of the proposed research. It should frame the research needs, objectives, hypotheses (or non-hypothesis research goals), and expected outcomes for a defined program of research. The plan details experimental approaches, procedures, contingencies, and collaborations necessary for accomplishing the proposed research. International activities and collaborations should be specifically articulated in the Project Plan.

Although the Lead Scientist has primary responsibility for Project Plan development, the effort should be a joint one, benefiting from close collaboration with line management up to and including the Area Office, and with ONP. While the Lead Scientist and RL ensure that the Project Plan is consistent with the approved PDRAM and Office of Scientific Quality Review (OSQR) instructions and represents the best effort of the team, the Area Office provides feedback and guidance to ensure that the final project plan is well conceived, clearly written, and soundly designed.

NPL VALIDATION

During this process of development, critical review may also be requested from additional scientists, including the NPLs, who may provide valuable comments to the project team. If requested to provide feedback on draft project plans, the NPL should copy comments sent to field scientists to the Area Office, as well.

Once the plan is completed and approved by the Area Director, it is submitted to ONP for review and validation by the NPL. This examination is of the project plan objectives and approach taken to reach those objectives. When sent to ONP the plan has a Validation Page with place for the NPLs signature. This is preceded or followed by the appropriate signature page (see Appendix 4) when the plan is then submitted to OSQR. NPLs must be informed of any change to objectives after a plan is validated.

A sample Validation Page is below.
PrePlan Signature Page for ONP Validation(s)
Pre-Peer Review

Lead Scientist’s Name
Project Number
Project Title

☐ Signature Page Completed for Research Leader through Area Director

☐ The objectives in this PrePlan are those provided in the PDRAM or subsequently approved by the Office of National Programs and the approaches are suitable for achieving the objectives

__
National Program Leader

__
Date
APPENDIX 14.
Postponement Guidelines

This replaces Bulletin No. 07-601:
Guidelines for the Postponement of Research Project Plan Peer Reviews

Postponement of peer review will be approved only under special circumstances where potential options have been exhausted. Once a panel has been appointed for review of a set of project plans removal or postponement of plans undermines the credibility and integrity of the Agency and its peer review process. Cooperation at all program and administrative levels is needed to ensure that deadlines are met and that plans are reviewed on time. Before considering postponement, the Lead Scientist and Research Leader, Center/Institute/Laboratory Director are expected to make every effort to complete the plan as scheduled.

While requests for postponement are not frequently approved, there are criteria that may support such a request:

1. Key Scientific Leadership Vacancies and Long-Term Absences. Departure or absences of key staff or new appropriations providing for new projects may result in critical leadership vacancies. Departure or absences of staff or new appropriations may result in projects with critical vacancies in leadership and/or scientific expertise. Where vacancies or absences are anticipated, it is expected that options to enable completion of the project plan will be diligently considered. Note that the absence of a single scientist, other than the Lead Scientist, from a multiple-scientist project is generally not sufficient to warrant postponement of review.

2. Significant Reorganization or Redirection of Research. Reorganization or redirection of research projects should be done in sufficient time to allow development of project plans on the assigned National Program schedule (see Schedule of Peer Reviews at www.ars.usda.gov/osqr). Postponement will be considered when unanticipated appropriations or actions that result in initiation, reorganization, or redirection of research are received.

It is anticipated that careful consideration of all options will result in very few requests for postponement. Consultation with the Area Director and appropriate National Program Leader and Deputy Administrator must occur before requesting postponement. Requests for approval of a postponement originate with the Lead Scientist or Research Leader and addressed to the Associate Administrator, Research Management and Operations. (See the memo template below.) It is important that the request for a postponement be made before an OSQR Review Panel has been selected and it is expected that requests generally would not be made after receipt of a PDRAM by the Area Director.

The memo to the Associate Administrator contains the following information:

1. Project Number
2. Title of the Project
3. National Program
4. Management Unit
5. Name of the Lead Scientist
6. Name of the Research Leader, Center/Institute/Laboratory Director (if applicable), Area Director, National Program Leader, and Deputy Administrator, who the memo goes “through” for concurrence.
7. Investigators assigned to the project and percent time contribution by each.
8. Specific reason(s) for the requested postponement.
9. Efforts made to complete the project plan write-up, and why they were unsuccessful.
10. Time period of the requested postponement and proposed date when the plan will be ready for review.

Requests for postponement are routed electronically (as a Microsoft Word file) through the Research Leader, the appropriate Center/Institute/Laboratory Director, Area Director, and the appropriate National Program Leader and Deputy Administrator, with a copy to the relevant Area and National Program Analyst. In addition, an electronic copy of the request is sent to OSQR at the time it is initially sent from the Area to the National Program Leader (Please note cc's on the sample memo provided). If the Deputy Administrator recommends approval of the postponement, the request then is forwarded by OSQR to the Associate Administrator, Research Management and Operations; who will approve or disapprove the request. Postponement requests should NOT be sent directly to the Associate Administrator, Research Management and Operations, but are routed through OSQR.

The Associate Administrator’s decision is sent by email to the Area Director with a copy to the National Program Leader, Deputy Administrator, and OSQR. The relevant Area and ONP Program Analysts are informed of the decision by OSQR.

Until a request for postponement is approved, plans are due as originally scheduled.

1) Responsibilities

All involved, line management and National Program Staff, are to make every effort to ensure that research projects are submitted in a timely manner for peer review.

1. Associate Administrator for Research Management and Operations, where applicable, through the OSQR, assures ARS is in compliance with P.L. 104-185; Section 103(d). Considers reasons why project has not met schedule along with recommendations for the postponement, makes, and communicates a final decision of approval or disapproval, and expected date of submission of the project for review to the Area Director, Deputy Administrator, National Program Leader, and OSQR.

2. Office of Scientific Quality Review administers and provides guidance on the ARS Peer Review Process. Tracks progress and status of postponement requests and transmits those recommended for approval by Deputy Administrators to the Associate Administrator for Research Operations and Management.
3. **Area Directors** discuss, review rationale for the project not meeting the schedule, and approve or disapprove requests for the postponement. Consider input on the rationale for postponements from the Lead Scientists, Research Leader, Center/Institute/Laboratory Director and National Program Team.

4. **National Program Leaders and Deputy Administrators** discuss, review rationale for the projects not meeting the schedule, and approve or disapprove requests for the postponement of peer review.

5. **Research Leaders** review and approve or disapprove requests for the postponement of peer reviews. Research Leaders may also initiate requests for postponements.

6. **Lead Scientists (or individuals acting in their capacity)** request postponement of the peer review after all alternatives and options to submit the project in a timely manner have been exhausted.

7. **Program Analyst** tracks requests through ARIS Peer Review Tracking System.
Template – Memo Requesting Postponement Approval

Note: The Office of Scientific Quality Review (OSQR) should receive a copy of the initial request and, if recommended for approval, the complete request for transmittal to and approval or disapproval by the Associate Administrator, Research Management and Operations.

[Date]

SUBJECT: Request for Approval of Postponement of Project [number] [Title] from NP [number] Peer Review Session

TO: Caird E. Rexroad
Associate Administrator
Research Management and Operations

THROUGH:

Deputy Administrator, Division

National Program Leader

Area Director, Area

Center/Institute/Laboratory Director, Unit Name

Research Leader, Management Unit

FROM: ______________________
Lead Scientist, Management Unit

We request that the project [title] be postponed from the peer review scheduled for [month, year] by the Office of Scientific Quality Review [peer/ad hoc/re-review] panel as part of the review of NP [number] project plans.

Reason for Request: Provide a clear description of the circumstances that preclude review, and options considered for completion of the plan.
Lead Scientist: *Lead SY*

Investigators: *List investigators with percent time, as shown on the project cover sheet*

Time period of the requested postponement and anticipated date of submission: *[month, year]*

cc:
OSQR
Area PA
ONP PA

From OSQR: If postponement is approved, OSQR anticipates this plan would be in the following review: *[date]*