

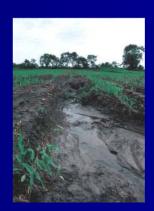
Ghassem R. Asrar

Deputy Administrator

Natural Resources and Sustainable Agricultural Systems

National Academies of Science First Federal Sustainability Research and Development Forum Biofuels - State of the Art Examples of Sustainable Research and Development October 17, 2007

- Corn stover has been identified as a significant source of biomass for bioenergy.
- However, when returned to the land, stover replenishes Soil Organic Carbon.
- Soil Organic Carbon improves soil structure, enhances water exchange, helps sustain soil microbial life.
- Removing stover can reduce grain and stover yields of subsequent crops.



Sustainability Challenge

How to harvest corn stover without depleting Soil Organic Carbon and still contribute significant amounts of biomass for biofuels production

ARS Research Infrastructure

REAP Team Locations

- Nation-wide network of coordinated research teams.
- Historic watersheds, long-term experiments, and databases.
- Interdisciplinary approach including bio-physical sciences, modeling, and economics.
- Excellent collaborations with universities, industry, and other Agencies.

Infrastructure Applied for Outcomes

REAP Team Locations

- Documentation of management system effects.
- Algorithm-based guideline to sustainable harvest.
- Place-based decision support tools:
 - Residue harvest estimator.
 - Quantify stover economic and ecosystem service benefits.

Natural environment affects SOC replacement requirements:

- No one replacement recommendation is possible.
- Moisture gradient.
- Temperature gradient.

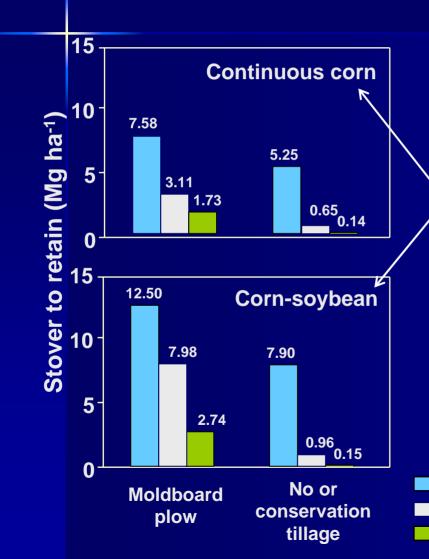
Natural environment affects SOC replacement requirements:

- No one replacement recommendation is possible.
- Moisture gradient.
- Temperature gradient.

Effective moisture increases from west-to-east

SOC *Increases*of Net Primary Production

(Result of Net Primary Production)


Average temperature increases from north-to-south SOC *Decreases* (Resultrof temperature)

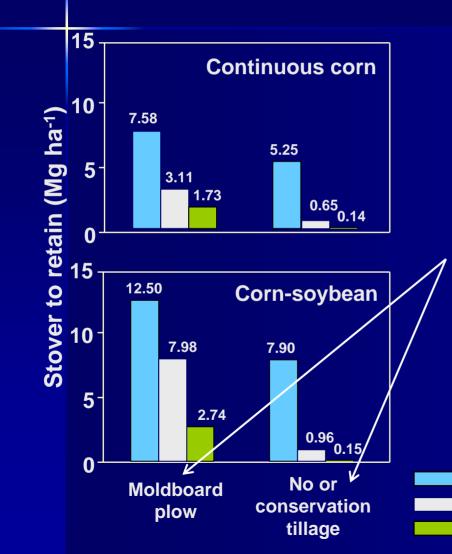
Natural environment affects SOC replacement requirements:

- No one replacement recommendation is possible.
- Moisture gradient.
- Temperature gradient.

Effective moisture increases from west-to-east

SOC *Increases* (Result of Net Primary Production)

Management affects SOC replacement requirements:


Crops in rotation

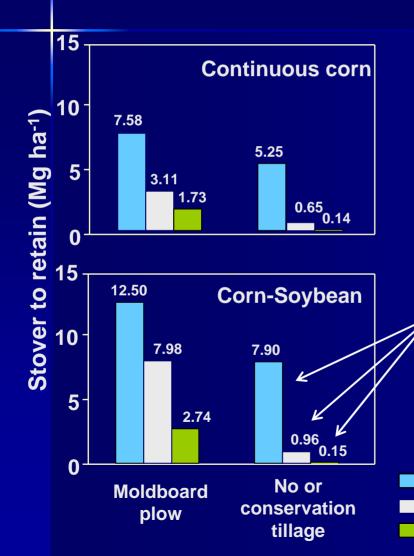
Soil organic carbon

Water erosion

Wind erosion

Soil tillage preparation

Management affects SOC replacement requirements:


Crops in rotation

Soil organic carbon

Water erosion

Wind erosion

Soil tillage preparation

Management affects SOC replacement requirements:

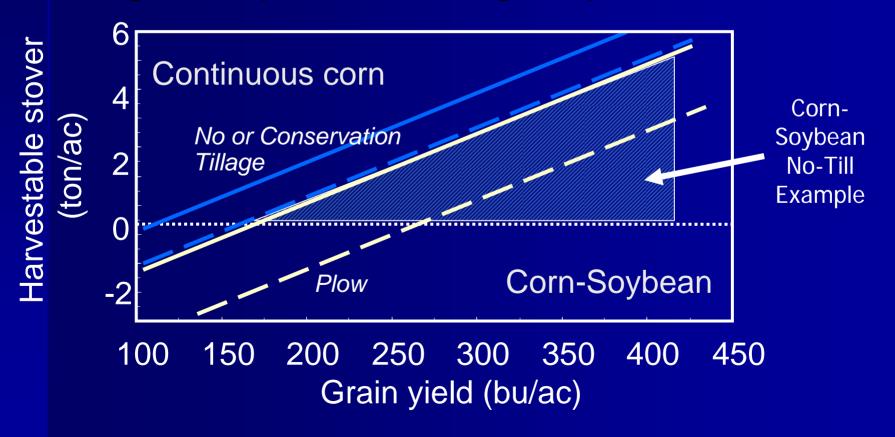
Crops in rotation

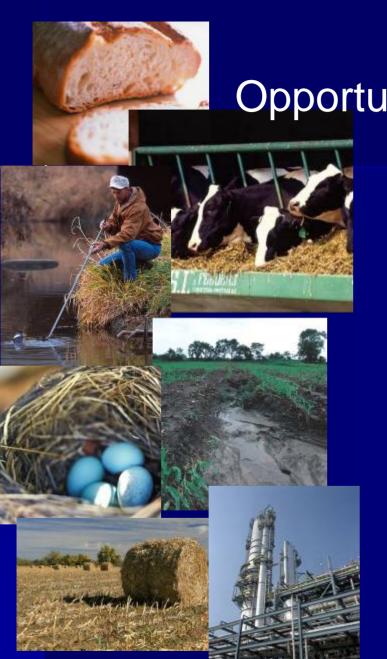
Soil organic carbon

Water erosion

Wind erosion

Soil tillage preparation


More stover is needed to maintain *Soil Organic Carbon* than to prevent water and wind erosion.



Corn stover removed from fields also has a nutrient replacement cost.

Element	Amount in stover	Value
	Lbs/ton	\$/ton
Nitrogen	16.0	8.00
Phosphorus	1.6	1.52
Potassium	13.5	2.29
Total cost		\$11.81

Harvestable corn stover amount by different soil management practices and grain production levels

Challenges and New Opportunities from Agriculture

- Continued traditional outputs for an increasing world population:
 - Food, feed, and fiber
- Ecosystem services:
 - Control erosion & nutrient loss
 - Sequester carbon
 - Wildlife habitat
 - Water quality & quantity
- Replenish SOC & plant nutrients.
- Feedstocks for biofuels.

Wally Wilhelm, ARS-Lincoln, NE
Doug Karlen, ARS-Ames, IA
Idaho National Laboratory
Oak Ridge National Laboratory
National Renewable Energy Laboratory
USDA-NRCS