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Abstract

The past several decades has scen considerable progress in the conceptual understanding
and mathcmatical description of water flow and solute transport processes in the
unsaturated or vadosc zonc. A variety of analytical and numerical models are now
available to predict water and/or solute transfer processes between the soil surface and
the groundwater table. The most popular models remain those based on the Richards
equation for variably-saturated flow, and the Fickian-based convection-dispersion
cquation for solute transport. Deterministic solutions of these classical equations likely
will continue 1o be used in the near future for predicting water and solute movement in
the unsaturated zone. In this paper we review recent developments in variably-saturated
flow and wansport rescarch, especially from the point of view of process-based
modeling. Among the topics being discussed are single-ion equilibrium transport,
physical and chemical nonequilibrium transport, volatitization and degradation, multiple-
species solute transport, parameter estimation, and recent advances in numerical
modeling. Also bricfly discussed are alternative stochastic approaches for evaluating
contaminant transport in spatially variable field soils.

1. Introduction

The fate and transport of a variety of chemicals migrating from industrial and municipal
waste disposal sites, or intentionally applied to agricultural lands, is increasingly
becoming a concern. Once released into the subsurface environment, these chemicals are
subject to a large number of simultaneous physical, chemical, and biological processes,
including somption-desorption, volatilization, photolysis, and biodegradation. For example,
the persisience of many organic chemicals, including pesticides, in soils is largely
determined by the extent of degradation, sorption and volatilization. Several processes
such as liquid and gascous molecular diffusion, and convective-dispersive transport, act
only on solutes that are not adsorbed. Degradation of organic compounds likely occurs
mainly, or cven cxclusively, in the liquid phase. On the other hand, radioactive decay
takes place equally in the solution and adsorbed phases, while other reactions may occur
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only in the sorbed phasc. Depending upon the type of organic chemical, transport may
also be subject to multiphase flow involving partitioning of the chemical between
different fluid phascs.

Many models of varying degree of complexity and dimensionality have been
developed during the past scveral decades to quantify the basic physical and chemical
processes affecting pollutant transport in the unsaturated zone. Models for variably-
saturated water flow, solute transport, aqueous chemistry and cation exchange were
initially developed mostly independently of each other, and only recently has there been
a significant effort to couple the diffcrent models. Also, most solute transport models in
the past considered only one solute, For example, the processes of adsorption-desorption
and cation cxchange were often accounted for by using rclatively simple lincar or
nonlincar Freundlich isotherms such that all reactions between the solid and liquid
phascs were forced to be lumped into a single distribution cocff icient, k,,, and possibly
a nonlincar exponent. Other processes such as precipitation-dissolution, bicdegradation,
volatilization or radioactive decay were gencrally simulated by means of simple first-
and/or zero-order rate processes. These simplifying approaches were needed so as o
keep the mathematics relatively simple in view of the limitations of previously available
computers. The problem of coupling models for water flow and solutc transport with
multicomponent chemical equilibrium and nonequilibrium models is now increasingly
being addressed, facilitated in part by the introduction of more powerful computers, and
the concomitant development of more advanced numerical techniques.

In the first pant of this papcr we will describe several conceptual approaches for
modeling solute transport in variably-saturated media, and discuss some of their
limitations. Next, we will review recent devclopments in numerical techniques used for
solving the governing flow and transport cquations, including methods for solving large
sparsc maitrices resulting from spatial and temporal numerical discretizations. We also
bricfly discuss the problem of subsurface heterogencity and alicrnative  stochastic
approaches for quantifying solute transport in such systems.

2. Water Flow and Single Species Solute Transport
2.1. GOVERNING EQUATIONS

Deterministic descriptions of water and solute movement in the vadose ZONC are
generally bascd on the classical Richards cquation for variably-saturated water (low and
the convection-dispersion cquation for solute transport. For onc-dimensional vertical
transler, thesc cquations are respectively

dh _ 90 dh _ . 1
C(h)_gl_ 5?[K(h)jz_ K(h)] +S (1)
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where C is the soil water capacity, i.c., the slope of the soil watcr retention curve, 0(h);
0 is the volumetric water content, A is the soil water pressure head (negative for
unsaturated conditions), ¢ is time, z is distance from the soil surface downward, X is the
hydraulic conductivity as a function of 4 or 9, s is the solute concentration associated
with the solid phase of the soil, ¢ is the solute concentration of the liquid phase, p is the
soil bulk density, D is the solute dispersion coefficient, S and ¢ are sources and sinks
for water and solutes, respectively, and q is the volumetric fluid flux density given by
Darcy’s law as

q=—K(/x)_‘1’i+K(h) (3)
Jdz

Assuming lincar sorption such that the adsorbed concentration (s) is lincarly related
to the solution concentration (c) through a distribution coefficient, kj, (i.e., s=kyc), Eq.
(2) reduces to the simpler form

dc _ )
E(ODE qc) + ¢

d(BRc) _ 9

ot

where R = 1+ pky/8 is the solute retardation factor. For conditions of steady-state water
llow in homogcneous soils, and neglecting the source/sink terms S and ¢, Eq. (4) further
reduces to the standard convection-dispersion equation;
2
R dc =D d% dc (5)

where v = ¢/0 is the average pore water velocity.

While models based on Egs. (1) and (2) have proved to be important tools in
rescarch and management, they are subject to a large number of complications and
simplifying assumptions which compromise or limit their applicability [115]. It may be
instructive to list here some of these assumptions and limitations. For example, the
equations assume that (a) the air phase plays a relatively minor role during unsaturated
flow, and hence that a single equation can be used to describe variably-saturated flow,
(b) Darcy’s equation is valid at both very low and very high flow velocities (including
those occurring in structured soils), (c) the osmotic and electro-chemical gradients in the
soil water potential are ncgligible, (d) the fluid density is independent of the soluic
concentration, and (¢) matrix and fluid compressibilities are relatively small. The
cquations arc further complicated by (f) the hysteretic nature of the retention function,
O(h), (g) the extreme nonlinearity of the hydraulic conductivity function, K(k), (h) the
lack of accurate and cheap methods for mcasuring the unsaturated hydraulic properties,
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(i) the extreme heterogencity of the subsurface environment, and (j) inconsistencics
between the scale at which the hydraulic and solutc transport parameters in Egs. (1) and
(2) arc usually measured, and the scale at which the predictive models are being applicd.
In addition, Egs. (1) and (2) arc formulated for isothermal soil conditions. In rcality,
most physical, chemical and microbial processes in the subsurface are strongly
influenced by soil temperature. This also applics to water flow itself, including the
effects of temperature [32, 67] and the concentration and ionic composition of the soil
liquid phase (36, 149] on the unsaturated soil hydraulic properties. Hence, a complete
description of unsaturated zone transfer processes requires also consideration of heat
flow and its nonlinear cffect on most processes taking place in the soil-plant system.

2.2. ROOT WATER UPTAKE

An important term in the variably-saturated flow cquation (Eq. 1) is the source/sink term
§ which may be used to account for water uptake by plant roots. Widely diffcrent
approaches exist for simulating water uptake [106]. Many of the carly studics of root
waler uptake [183, 15) have used uptake functions of the form

$(2,0) = =b,(2) K(8) [h, - h(z,1)] (6a)

where 4, is an effcective root-water pressurc head at the root surface, and b, is a depth-
dependent proportionality constant often referred to as the root effectivencss function.
Equation (6a) may be vicwed as a finite difference approximation of Darcy’s law across
the soil-root interface. Another class of models for root water uptake is given by [44,
158].

S(z,0) ==b,(z) o, (h(z,1)) T, (6b)

where b, is the potential root water uptake distribution function which integrates to unity
over the soil root zone, o, is a dimensionlcss water stress response function between O
and 1, and 7, is the potential transpiration rate. The effects of salinity on water uptake
have been accounted for by lincarly adding the osmotic head, m, to the pressure head,
h(z,t) in Eq. (6a) or (6b) [14, 23, 24, 25), or by incorporating into Eq. (6b) a scparate
salinity stress response function, o,(r), somewhat similar o o, (/) [165, 141). Cardon
and Letey {23] showed that approaches based on Eq. (6b) may be morc appropriate than
(6a), particularly if suitably modificd and used for saline conditions. Still, as pointed out
by Nielsen et al. [115}, the above two classes of root water uptake modcls arc cssentially
empirical by containing parameters that depend on specific crop, soil, and environmental
conditions. Much rescarch remains needed 1o develop realistic process-bascd descriptions
of root growth and root water uptake as a function of various stresses (water, salinity,
lempcerature, others) in the root zone, and to couple these descriptions with suitable crop
growth models.
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Figure 1. Measured and calculated breakthrough curves for Ct, *H1,0 and Cr*'.

2.3. LINEAR EQUILIBRIUM SOLUTE TRANSPORT

Several simplifying assumptions arc usually invoked when defining the sorption/
exchange term dps/dt in Eq. (2). Most often, a lincar equilibrium isotherm, s=kc, is
used o describe solute interactions between the liquid and solid phases of the soil,
leading 10 a constant retardation factor R in Eq. (4). The resulting convection-dispersion
cquation (CDE) given by Eq. (5) has been reasonably successful in describing
displacement data for relatively uniform laboratory or field soils. Figure 1 shows solute
breakthrough curves typical of the transport of an excluded anion, CI, a nonreactive
solute (tritiated watcer, ’HZO), and an adsorbed tracer, Cr®, through homogencous media.
The first two tracers pertain to transport through 30-cm long columns containing
disturbed Glendale clay loam (Wierenga, 1972, unpublished data; | 168]), while the Cr®*
data are for transport through a 5-cm long column of sand (Wicrenga, 1972, unpublished
data). The data in Figurc 1 arc plotied versus number of pore volumes (T = vi/L) of
tracer solution Icached through the columns. Analysis of the breakthrough curves in
terms of the CDE using inverse procedures [163] yiclded R-values of 0.681, 1.027 and
1,248, respectively, for the three tracers. Hence, CI' was strongly affected by anion
exclusion (R < 1; k, < 0) resulting from the repulsion of chloride anions away from
negatively charged surfaces of clays and ionizable organic matter. Because water flow
velocities are zero along pore walls, and maximum in the center of pores, anions such
as CI' can travel much faster than water, especially in fine-textured soils.
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2.4. NONLINEAR ADSORPTION

While the usc of a lincar isotherm can grealy simplify the mathematics of a transport
problem, sorption and exchange reactions arc gencrally nonlincar and usually depend
also on the presence of competing specics in the soil solution. The solute retardation
factor for nonlinear adsorption is not constant, as is the casc for lincar adsorption, but
changes as a function of the slope of the adsorption isotherm:

R=1 +% d‘jc) V)
C

A variety of models have been used in the past 1o describe the nonlincar nature of
adsorption-desorption process. Table 1 lists some of the most commonly used sorption
models relating the adsorbed concentration, §, to the total concentration, ¢, of an ion in
solution. Although scveral of the equations in Tablc 1 (e.g., the Langmuir and Freundlich
equations) can be derived rigorously such as for the adsorption of gascs onto solids, the
expressions are gencrally used only in a purcly empirical fashion. Of the equations listed
in Table 1, the most popular sorption models are the Langmuir, Freundlich and Temkin
equations,

A general classification of adsorption as reflected by different fcawres of the
adsorption isotherm, such as the initial slope, the presence or absence of a platcau, or
the presence of a maximum, was proposcd by Giles et al. [56]. They divided possible
adsorption processes into four main classcs: S, L (Langmuir), H (high affinity), and C
(constant partitioning) isotherms, and discussed mechanisms explaining the different
types of isotherms. Increasing solution concentrations result in increasing or decreasing
adsorption rates for the S and L isotherms, respectively, An H isotherm is characterized
by extremely high affinitics of the exchanger for exchangeable ions, whercas a C
isotherm results from constant partitioning of the solute between the solution and
adsorbed phascs. The shape of an isothermi can have significant effccts on transport
predictions. For example, S and L isotherns lead to unfavorabic and lavorable exchange
situations, respectively, with the latter condition (e.g., for a Frcundlich isothcrin with
k,<<1) producing relatively sharp concentration fronts during transport in a soil profile.
The cffects of isotherm nonlinearity on solute front sharpening are discussed at length
by Bolt [9], van Genuchten and Cleary (168} and, morc rccently, by van der Zee and
van Riemsdijk [160).

2.5. NONEQUILIBRIUM TRANSPORT

Application of the above equilibrium models to single-ion transport through repacked
laboratory or relatively uniform ficld soils has been fairly successful. The cquilibrium
approach, however, has not worked well in several situations, most notably for many
strongly adsorbed solutes, many organic chemicals, and when used for simulating
transport in structured (aggregated) media. A number of chemical-kinctic and diffusion-
controlled "physical” modcls have been proposed to describe noncquilibrium transport.



Table 1. Equilibrium Adsorption Equations [168], [5]

Equation Model Reference
s=koc vk, Linear Lapidus and Amundson |87]
Lindstrom et al. [98]
smkch Freundlich Freundlich [48}
1
k¢
d TTI(:E Langmuir Langmuir [86]
k¢ h
I Freundlich-Langmuir Sips [144]
I +kie™
om k¢ k¢

s =

1+ ke fk,‘/;
s-klc"—k_,

sk A=+ ke ™M

S RT
&

In(k,c)

s =k cexp(-2k,s)

Zo=cle vk (e, ~c)

Sr

expli,(c, -2¢)}]"

Double Langmuir

Extended Freundlich

Gunary

Fiuer-Sutton

Barry

Temkin

modified Kielland

Shapiro and Fried [138)

Sibbesen [139]

Gunary [61]

Fitter and Sutton (46]

Barry [5]

Bache and Williams [4]

Lindstrom ef al. {97)
van Genuchten et al. [170]

LLai and Jurinak {85]

ky, &y, Ky, k, cmpirical constants

R universal gas constant

T absolute temperature

cr maximum solute concentration

Sy maximum adsorbed concentralion

Most of the carly attempts 10 model nonequilibrium transport invoked relatively simple
first-order (one-site) kinetic rate equations. More refined noncquilibrivm models
subsequently used the assumpltions of two-sitc or multi-site sorption, and/or two-region
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(dual-porosity) transport involving solutc cxchange between mobile and relatively
immobile liquid regions. Models of this type have resulied in betier descriptions of
observed laboratory and ficld transport data, in part by providing additional degrees of
freedom (fitting parameters) {or describing observed concentration distributions. The
different modeling approaches arc bricfly summarized below.

2.5.1. One-Site Sorption Models

The simplest nonequilibrium formulation arises when a chemically controlled first-order
linear kinctic ratc process is assumed. Ignoring any solute production or decay processcs,
-Eq. (2) in that casc is augmented with the equation

.
.37‘=a(k,,c ~5) ®)

where o is a [irst-order kinetic rate coefficient. Transport modcls using the above onc-
site kinctic sorption cquation have resulted in only modest improvements in terms of
their ability to match obscrved displacement data {37, 170]. Success in general was
limited only 10 experiments conducted at relatively low pore water velocities where the
cquilibrium model alrcady did perform reasonably well. Morcover, several of the
sorption paramcters (k, and o), when adjusted to get better transport prediclions, were
found to frequently vary as a function of the pore walter velocity. Similar conclusions
hold for most or all of the other noncquilibrium rate expressions listcd in Table 2.

2.5.2. Two-Site Chemical Nonequilibrium Transport

The one-site first-order kinctic model may be expanded into a two-site sorption concept
by assuming that the sorption sitcs can be divided into two fractions [{137]: sorption on
onc fraction (type-1 sites) is assumed to be instantancous while sorption on the
remaining (type-2) sitcs is considered 1o be time-dependent. Assuming a lincar sorption
proccss, the complete two-site transport model is given by [173]

a + - a aC _ _ _ _ _ _ 9
m(e foky)c _(,)_Z_(OD_(,)_Z_ qc) -op [(1-Nkyc=5,1-0pc~fpk,p ¢ ()

3
_éil‘_=(x[(l “Dko =50 =15, (10)

where y, and g, are first-order decay constants for degradation in the liquid and sorbed
phases, respectively; fis the fraction of exchange sites assumed to be at cquilibrium, and
the subscripts e and k refer to cquilibrium (type-1) and kinetic (type-2) sorption
sites,respectively. Note that if f = 0, the two-site sorption model reducces (o the one-site
fully kinctic sorption model, i.c., only type-2 kinclic sites are present. On the other hand,
if f= 1, the two-sitc sorption model reduces to the cquilibrium sorption model. The
two-site sorption model has been quite successful in describing a large number of mostly
laboratory type miscible displaccment experiments involving a variety of organic and
inorganic chemicals (21, 129, 65, 122].
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Tablc 2. Non-Equilibrium Adsorption Equations 1168]

Equation Model Reference

%“: =a(k,c+k,-s)

Linear Lapidus and Amundson {87)
Oddson et al. [117]

ds k,
’n -« (k‘ ¢ 5) Freundlich Homsby and Davidson [68]
3 k¢ van Genuchten et al. {170]
M
_=a |t -
ot 1+ klc Langmuir Hendricks [63]
L3
s kc™
Do
ot 1 +/(25 b, Freundlich-Langmuir Simdnck and van Genuchten [142]
( S, =S
98 —o (s, -5) sinhk, T .
at Sp 8, Fava and Eyring [42]
95 o explk,s) (k. coxp(~2k.5) -s)
ot 2 ! 2 Lindstrom et al. {97]
ds _ koK,
ot cets Leenheer and Ahlrichs [90]

Enfield ef al. {41]

2.5.3. Two-Region Physical Nonequilibrium Transport

The two-region physical nonequilibrium transport model assumes that the liquid phase
can be partitioned into distinct mobile (flowing) and immobile (stagnant) liquid pore
regions, and that solutc exchange between the two liquid regions can be modeled as a
first-order exchange process [175, 18]. Using the same notation as before, the (wo-
region transport model is given by [173]

d _d ac,, (1n
20,4k =L (0,0, 57 e ) -oule, -, ) (O, ko, ).
()’ m m ()Z m m az m m im m m
9c, (12)
10, +(1-Hp kD]T =a(c,~c,) “10,1,,+(1 _f)pkt)}‘,,.‘ml Cim

where the subscripts m and im refer to the mobile and immobile liquid regions,
respectively; the subscripts [ and s refer to the liquid and sorbed phascs, respectively;
f represents the fraction of sorption sites that equilibrates with the mobile liquid phase,
and o is a first-order mass transfer cocfficient governing the rate of solute cxchange
between the mobile and  immobile liquid regions. The two-region physical
noncquilibrivm  model  has  been successfully —applied to  laboratory-scale
transportexperiments involving a large number of tracers (tritiated water, chloride,
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different organic chemicals, heavy metals) as shown in studics by {51, 176, 114, 49].

As an example, Figure 2 shows breakthrough curves for the pesticide 2,4,5-T (2,4,5-
Trichlorophenoxy-acetic acid) obtained from a 30-cm long soil column containing
aggregated (<6 mm in diamecter) Glendale clay loam [172]. Notice that the two-region
model (TRM) provides an cxcellent description of the data, whercas the CDE modcl
performed relatively poorly.
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Figure 2. Observed and fitted effluent curves for 2,4,5-T movement through Glendale clay foam. The lited
curves were based on the classical CDE (A) and two-region TRM transport models.

A close comparison of the two-site and two-region noncquilibrium models shows that
both have the same mathematical structure. As indicated previously by Nkedi-Kizza et
al. [113] and Toride et al. [155], among others, the two models can be put into the same
dimensionless form using appropriately sclected dimensionless paramelters. Because the
samc dimensionless transport cquations apply to conceptually different transport
situations, it also follows that breakthrough curves such as thosc shown in Fig. 2
generally contain insufficient information to differentiate between specilic physical
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(mobile-immobile type) and chemical (kinctic type) processes leading to nonequilibrium,
unless nonadsorbing tracers are considered. Hence, independent parameler estimates are
gencrally needed to cffectively differentiate between presumed two-site and two-region
noncquilibrium phenomena. On the other hand, the mathematical similarity of the two-
site and two-rcgion modcls also suggests that the two formulations may be used 0
describe macroscopic transport without having to delincate the exact physical and
chemical processes at the microscopic level.

2.5.4. Nonequilibrium Transport in Structured Media

The mass transfer cocfficient o in the two-region model, Egs. (11) and (12), is a quasi-
cmpirical paramcter which accounts for the overall effects of intra-aggregate diffusion
as determined by soil aggregate size, aggregate gecometry and the diffusion coefficient.
Expressions for o may be derived theoretically for transport through geometrically well-
defined structured porous media, i.c., media containing uniformly-sized cylindrical,
rectangular, spherical or other types of macropores or aggregates or fractures [169]. Stitl,
onc important limitation of mobile-immobile two-region type transport models is the
assumption that water flow is limited to the macropore region. This assumption is
inconsistent with experimental observations which indicate that water in the soil matrix
is generally also mobile,

Dilferent types of models have been used to simulate transport in variably-saturated
structured media {180, 193]. As an example, we will summarize here the dual-porosity
model developed by Gerke and van Genuchten [54, 55). This modcl assumes that the
Richards equation for transient water flow and the convection-dispersion equation for
solute transport can be applied to each of the two pore systems (Fig. 3), i.c.,

dh p) dh r
Cot =2 (K_L-K)-_~ (13)
"ot 82( 9z f) W,
r
M 3 Mgy u T (14)
™ ot dz " dz " l—w/
and
p) J dc, r
—(ORc)=_—_(OD_L-gc)-_2 (15)
Dl( Rer) Dz( A Jz ‘1/('/) W,
Jc r
QOrc)=20D % g cye L (16)
TR A T-w,

where the subscripts f and m refer to the fracture and matrix pore systems, respectively;
I', and T, describe the rate of exchange of walter and solute between the fracture and
matrix regions, respectively; w, is the volume of the fracture pore system relative to that
of the total soil pore system. Similarly as for the first-order mobile-immobile transport
maodels, water and solute mass transfer between the (wo pore systems is described with
first-order ratc equations
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Figure 3. Schematic illustration of rectangular porous matrix blocks of width 2a. The blocks, arranged as
parallel slabs arc scparated by a fracture pore system of width 2b.

r, = o, (h-h) (17)

w

I‘ww,()fc//() I =0 (18)

[(1-w)0,c /6  T.<0

' =a(c

3 s /—Cm) +

in which @, and a, are first-order mass transfer cocfficients for walter and solule,
respectively. The first term on the right-hand side of (18) specifies the diffusion
contribution to T, while the sccond term gives the convective contribution. The above
variably-saturated dual-porosity transport model reduces to the first-order model for
conditions of stcady-statc flow in the fracture (macropore) region and no flow in the
matrix pore system (g,=I', =0). Simulations using the above dual-porosity model are
given by Gerke and van Genuchten [54] and van Genuchten [166].

2.6. VOLATILIZATION

Whilc in the past most chemical pollutants were regarded as involatile, volatilization is
now increasingly recognized as being an important process alfecting the fatc of many
organic chemicals, including pesticides, in ficld soils (57, 146]. While many organic
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poilutants dissipate by means of chemical and microbiological degradation, volatilization
may be cqually important for volatile substances, such as certain pesticides. The
volatility of pesticides is influenced by many factors, most important being the
physicochemical propertics of the chemical and several environmental parameters such
as temperature and solar cnergy. Even though only a small fraction of pesticide may
cxist in the gas phase, air-phase diffusion rates can be comparable to liquid-phase
diffusion since gas-phasc diffusion is about 10* times greater than liquid phase diffusion.

The solute transport equation for volatile solutes has three additional terms as
compared to Eq. (2) as follows

Ips) , 9(00) ,9(ag)_ 0 0 dc

D2 +vap, 28 g c-g sy
ot ot Jar 9z "9z 9z v a

where a is volumetric air content, g is the solutc concentration associated with the £as
phasce, D, and D, arc the solute dispersion coefficicnts in the liquid and gascous phases,
respectively; and ¢, and ¢, are the volumetric fluid flux densitics of the liquid and
gascous phases, respectively.

Assuming lincar sorption and volatilization such that the adsorbed (s) and gaseous
() concentrations are lincarly related o the solution concentration (c) through
distribution coefficients, &, (i.c., s= p¢) and k, (i.c., g=k,c), respectively, Eq. (19)
reduces to the simpler form (4), where q =q, + 4.k, is the effective fluid flux density,
R =1+ (pky + ak,)/0 is the solute retardation factor, and D = D, + aDk, /0 is the
cffective dispersion coefficient. For conditions of steady-state water and gas flow in
homogencous soils, and neglecting the source/sink term ¢, Eq. (19) reduces to the
standard convection-dispersion cquation (5), where v = (. + q.k,)/0 is the average pore
velocity.

2.6. DEGRADATION

The source/sink term ¢ in Eq. (2) may be used to account for nutrient uptake and/or a
variety of chemical and biological reactions and transformations insofar as these
processes are not already included in the sorption/exchange term dps/ot. Solute reactions
and transformations can be highly dynamic and nonlinear in time and space, especially
for nitrogen and pesticide products. For example, among the nitrogen transformation
processes that may need to be considered are nitrification, denitrification, mincralization,
and nitrogen uptake by plants [148]. For microbially induced organic and inorganic
transformations, the degradation process should also consider the growth and
maintcnance of soil microbes.

Alexander and Scow [2] gave a review of some of the equations used to represent
the kinctics of biodegradation. These cquations include zero-order, half-order, f, irst-order,
three-hall-order, mixed-order, logistic, logarithmic, Michaelis-Menton, and Monod lype
(with or without growth) expressions. Possiblc biological degradation equations are listcd
in Table 3. While most of these expressions have a (heoretical bases, they are commonly
uscd only in an empirical fashion by fitting the equations to observed data. Zero- and
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first-order kinctic equations remain the most popular for describing the biodegradation
of organic compounds, mostly because of the simplicity and casec in which these
cquations can be incorporated in solute transport models. Conditions for the application
of zero- and first-order biodegradation cquations are described by Alcxander and Scow

12}

Table 3. Biological Degradation Equations

Equation Model
o=~ /(l c First-order kinctics
¢ =- kl Zero-order kinctics
o =- kl ch Power rate kinetics
o= M.
Ks +c Monod, Michaelis-Menten kinetics
nc
o=~ (¢, +X,-¢) ) .
Ks +c Monod with growth kinetics
¢ - ﬂmxc
Ks +c+c Z/KI Haldane modification of the Monod kinetics
= - - - Logarithmic kinetics
q) l‘max( "0 M X() C) &
¢ =- kl C(Co +Xo -¢) Logistic kinetics
ky, k, cmpirical constants
Hoae maximum specific degradation
K substrate concentration when the rate of decay is half the maximum rate
[ initial substrate concentration
Xo amount of substrate required 1o produce the initial population
K, inhibition constant that reflects the suppression of the growth rate by toxic

substrate rate

One special group of degradation reactions involves decay chains in which solutes
are subject to sequential (or consecutive) decay reactions. Problems of solute transport
involving scquential first-order decay reactions frequently oceur in soil and groundwatcr
systems. Examples arc the migration of various radionuclides [131, 164], the
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simultancous movement of interacting nitrogen species [31, 154], organic phosphate
transport {26], and the transport of certain pesticides and their metabolites [178, 142].

3. Multicomponent Solute Transport

Thus far we have considered the transport of only one chemical species and assumed
that the behavior of this solute is independent of that of other species which may be
present in the soil solution. In reality, the soil solution is always a mixture of many ions
which mutually may interact, create complex species, precipitate, dissolve, and/or could
compete with each other for sorption sites. This section considers such more complex
situations leading to multicomponent transport.

3.1. THE AQUEOUS EQUILIBRIUM CHEMISTRY MODELS

Aqueous cquilibrium chemistry models [156, 181} which solve for solution equilibrium
without consideration of transport were originally developed mostly independent of the
models for water flow and solute transport. Only during the last decade has there been
a significant effort to couple the different types of models.

Chemical processes may be broadly divided into kinetic reactions and thermodynamic
cquilibrium reactions (i.c., rcactions which proceed sulficiently fast to be considered
instantancous). While, mathematically, kinetic processes lead to a system of ordinary
partial diffcrential equations, thermodynamic equilibrium processes normally result in
systems of algebraic equations. The term "component’ is generally used when dealing
with chemical equilibrium systems. Following Westall ef al. [181], components may be
defined as a set of lincarly independent chemical entities such that every species in the
system can be uniquely represented as the product of a reaction involving only thesc
components, and no component can be represented as the product of a reaction involving
only the other components. As a typical example, the chemical species CaCO,° consists
ol the two components Ca* and CO,*. However, from the definition of a component it
follows that any other combination of two species selected from the above system as
basis components, such as CaCO,” and Ca*, or CaCO,° and CO,>, may be used also
since the third species can always be represented by a linear combination of the two
selected components.

Chemical equilibrium can be formulated and solved mathematically by means of two
different but thermodynamically equivalent approaches, i.e., (1) by minimizing the Gibbs
free encrgy of the system subject to the constraints of mass balance, or (2) by using
equilibrium constants. The solution procedure for the second approach begins with an
initial guess for a set of components from which the minimum Gibbs free energy
composition can be readily calculated using equilibrium constants, after which the mass
balance equations are solved by iteration [181]. This approach is a popular method when
dcaling with chemical equilibrium system {156, 181).

Chemical reaction processes are generally represented mathematically using mass
action laws which relate thermodynamic cquilibrium constants 10 activitics (the
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thermodynamic clfective concentration) of the reactants and products involved [ 100].
For example, the rcaction

bB +¢cC »dD +¢E (20)

where b, ¢, d, and e are the number of moles of substances B and C which react o yield
products D and £, is represented at equilibrium by the law of mass action

d
dp dg

K - @

b ¢
dg d¢

where K is a temperature-dependent thermodynamic equilibrium constant, and g, is the
ion activity, being defined as the product of the activity cocfficicnt () and the ion
molality (m), i.c., ¢; = ym; Singlc-ion activity cocfficicnts may be calculated using
either an extended version of the Debye-Hiickel cquation [156] for dilute to moderatcly
salinc solutions, or by mecans of the more complicated Pitzer cxpressions [127] which
arc considercd more accurate for solutions having very high ionic strength down 10
solutions having infinitc dilution. Equation (21) can be used to describe all of the major
chemical processes, such as aqucous complexation, sorption, precipitation-dissolution,
and acid-base and redox reactions. Acid-base and redox reactions are usually formulated
by using the hydrogen ion H* and the electron ¢ as components, respectively [190).
Acid-base rcactions can be altematively treatcd by using the clectroncutrality condition.
A Newton-Raphson method is usually employed to solve the final set of nonlincar
algebraic cquations.,

3.2. MULTICOMPONENT TRANSPORT MODELS

Most modcling cfforts involving multicomponent transport have thus far focused on the
saturated zone where changes in water velocity, temperature and pH arc relatively
gradual and hence less important than in the unsaturated zone. Consequently, most
multicomponent transport models assume one-dimensional stcady-state saturated water
flow with fixed water flow velocity, temperature and pH [157, 179, 27, 19}, among
others. Only recently have several multicomponent transport models been published
which also consider variably-saturated flow [99, 191, 141].

In a recent review, Yeh and Tripathi {190] identified three different approaches for
mathematically solving multicomponent transport problems: (1) a mixed diffcrential and
algebraic approach, (2) a dircct substitutional approach, and (3) a sequential itcration
approach. In the first approach, the scts of differential and algebraic cquations
describing the transport processes and chemical reactions, respeclively, are treated
simultancously [103, 96]. In the second approach, the algebraic reactions representing
the nonlincar chemical reactions are substituted directly into the differential mass balance
transport cquations [133, 157, 73]. The third approach considers two coupled scts of
lincar partial diffcrential and algebraic cquations, which are solved scquentially and
iteratively {191, 179, 141}. Based on a study of computer resource requirements, Ych



155

and Tripathi [190] suggested that only the third method (sequential ileration) can be
applied to rcalistic two-dimensional problems, and that this method "provides perhaps
the only hope for realistic three-dimensional applications”.

Rigorous modcling of multicomponent transport of charged aqueous species requires
several refinements o Fick’s laws. Actual diffusion rates are influenced by the effects
of Coulomb interactions which maintain electroneutrality and which lead to a coupling
between cach solute flux and all concentration gradients [88]. lon pairing represents
another coupling mechanism since it couples the fluxes of the particular ions in a special
way. Thesc refinements to Fick’s laws are beyond the scope of this paper and will not
be considered here.

The partial differential equations governing one-dimensional  multicomponent
convective-dispersive chemical transport during transient water flow in variably saturated
porous media may be taken as [141]

D(Or) de, . a¢é,

—r P57 TT(O

dc

- 22
D.,r qc,) k=12, N, (22)
where ¢, is the total dissolved concentration of the aqueous component & (i.c., the sum
of the components plus all complex species containing component &), ¢, is the total
sorbed concentration of the aqueous component &, ¢, is the total precipitated
concentration of aqucous component k, (i.e., the sum of all precipitated species
containing the component k), and N, is the number of aqueous components. The second
and third terms on the left side of Eq. (22) are zero for components that do not undergo
ion cxchange or precipitation/dissolution. The above coupled approach involving
transport and chemical submodules was previously also followed by [179, 27, 19, 191].

4. Numerical Methods

A large number of analytical solutions have been published for simplified one- and
multidimensional transport problems [167, 72, 58, 91, 92, 155]. Unfortunately, analytical
solutions for morc complex situations, such as for transient water flow or the
noncquilibrium solute transport with nonlinear reactions, are not available, in which case
numerical modcls must be employed.

4.1. NUMERICAL SOLUTION OF RICHARDS EQUATION

A varicty ol numerical methods may be used 1o solve the variably-saturated flow and
transport equations. The popularity of numerical methods stems from the fact that the
highly nonlinear Richards equation can be solved analytically only for a very limited
number of cases involving homogeneous soils and relatively simple constitutive
relationships describing the unsaturated soil-hydraulic properties. Even so, the nonlinear
nature of the Richards cquation also hampered the development of computationally
cllicient numerical mcthods which would be stable in all sitwations, particularly for
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infiltration in very dry soils.

Early applications of numerical methods for solving variably-saturated flow problems
generally involved classical finite difference methods [62, 47]. Intcgrated finitc
diffcrence methods [109] and especially finite element methods [110, 71, 189, 142]
became increasingly popular in the seventies and cightics. Time and space discretization
of the Richards equation using any of thesc mcthods Icads (0 a nonlincar system of
equations. These equations arec most often lincarized and solved using the Newton-
Raphson or Picard iteration methods. Picard iteration is widely used because of its ease
of implementation, and because this method preserves symmetry of the final system of
equations. The Newton-Raphson iteration procedure is more complex and results in
nonsymmectric matrices, but often achicves a faster rate of convergence and can be more
robust than Picard iteration for certain types of problems [120]. Paniconi et al. [119)
obscrved that the Picard scheme is lincarly convergent, and therefore should converge
inorc slowly than the quadratically convergent Newton-Raphson scheme.

The basic approach for discretizing and solving the Richards cquation dilfers as a
function of the type of flow formulation being used, i.e., the h-bascd, the 0-based, or
the mixced formulation. Celia ef al. [28] suggested that numerical solutions based on the
standard hA-based formulation of (he Richards cquation often yicld poor results,
characterized by large mass balance crrors and incorrect estimates of the pressurc head
distributions in the soil profile. They solved the mixed formulation «of the Richards
cquation using a modificd Picard iteration scheme which possesses nass-conscrving
properties for both finite clement and finite difference spatial approximations. Milly
[105] carlier presented two mass-conservative schemes for computing nodal values of
the waler capacity in the A-based fornulation 1o force global mass balance. Scveral
highly efficient numerical schemes based on diffcrent types of pressure  head
transformations were presented recently by (64, 132, 80, 118]. Hills et al. 164) showed
that the 8-based form of the Richards cquation can yield fast and accurate solutions for
infiltration into very dry heterogenous soil profiles. However, the 0-based numerical
scheme can not be used for soils having saturated regions. Kirkland et al. [80] expanded
the work of Hills by combining the 0-based and A-based models to yicld a
transformation method applicable also to variably-saturated systems. They defined a new
variable which is a lincar function of the pressure hcad and water content in the
saturated and unsaturated zone, respectively,

4.2. NUMERICAL SOLUTION OF THE TRANSPORT EQUATION

A large number of numerical methods may be used to solve the convection-dispersion
solute transport cquation. These methods may be classified into three groups [111): (1)
Eulerian, (2) Lagrangian, and (3) mixed Lagrangian-Eulerian methods. In the Eulerian
approach the transport cquation is discretized by a usual finitc diffcrence or finitc
element method using a fixed grid system. For the Lagrangian approach the mesh cither
deforms and moves along with the flow path, or the mesh is assumed stable in a
deforming coordinate system. A two-step procedure is followed for a mixed Lagrangian-
Eulerian approach. First, convective transport is considered using a Lagrangian approach
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in which Lagrangian concentrations are estimated from particle lrajectorics.
Subscquently, all other processes including sinks and sources are modeled using the
standard Eulerian approach involving any finite element or finite differences method,
thus leading to the final concentrations.

Standard finite difference 13, 11] and Galerkin-type finite element (161, 59, 126]
methods belong to the first group of Eulerian methods. Finite differences and finite
clements methods provided the early tools for solving solute transport problems and, in
spite of some limitations as discussed below, still are the most popular methods being
used at present. Numerical studies have shown that both methods give good results for
transport where dispersion is a relatively dominant process (e.g., as indicated by the grid
Peclet number). However, both methods can lead to significant numerical oscillations
and/or dispersion for convection-dominated transport problems. The Eulerian methods
are very successlul when applied to symmetric problems such as diffusion-dominated
solute transport. The convection term brings nonsymmetry into the governing solute
transport equation and, as a result, the success of Eulerian methods for symmetric cases
is lost when convection dominates the transport process [38]. Still, by selecting an
appropriate combination of relatively small space and time steps, it is possible to
virtually eliminate all oscillations. Alternatively, the spatial grid system may be refined
using a "zoomable hidden fine-mesh™ approach [188] or by implementing local adaptive
grid refinement [185]. Perrochet and Berod [124] developed criteria for minimizing or
climinating numecrical oscillations based on a "performance index”. They conclude that
all oscillations should be eliminated when the performance index, defined as the product
of the local Peclet (vax/D) and Courant (vat/ax) numbers, is less than 2. When small
oscillations in the solution can be tolerated, the performance index can be increased to
about 5 or 10 [124]. Unfortunately, one may not always be able to decrease the spatial
step size, while for pure convection it is impossible to obtained reasonable resuls.
Thercfore, improved numerical methods that limit or prevent oscillations are still actively
being sought.

Onc altiecmative is the use of upwind finite diffcrence methods [29, 174, 171]. This
method virtually eliminates numerical oscillations, even for purely convective transport
[74]. A disadvantage is that this method may create significant and often unacceptable
numerical dispersion. Similarly, upstream weighting has been proposed for finite
clements {70, 187). The method uses weighting functions which are different for terms
having spatial derivatives than for other terms in the transport equation. This approach
places greater weight on the upstream nodes within a particular element. Methods based
on upstream weighting are called Petrov-Galerkin methods. Huyakorn and Nilkuha [70]
suggested for this purpose the nonorthogonal base function, whereas Yeh [187] used
orthogonal functions. Petrov-Galerkin methods require the use of higher-order weighting
functions, which makes their implementation more difficult than classical Galerkin finite
element methods [38]. A second alternative for overcoming numerical dispersion is the
use of higher order temporal and spatial approximation [66, 171, 89, 391, although, such
higher order approximations sometimes may increase numerical oscillations.

While Lagrangian methods (or method of characteristics) virtually climinate problems
with numerical oscillations [177, 116, 112], they may introduce other problems, notably
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artificial dispersion and nonconservative solution. Lagrangian methods are also relatively
difficult to implement in two and three dimensions. Instabilitics resulting from
inappropriate spatial discretization may occur during longer simulations as a result of a
deformation of the stream function. Furthermore, nonrealistic distortions of the results
may occur when modeling transport of solutecs which are subjccted to dilferent
sorption/exchange or precipitation reactions.

Mixed Eulerian-Lagrangian approaches have been reported by scveral authors [82,
111, 107, 145, 188]. In view of the different mathematical character of the diffusive
(parabolic) and convective (hyperbolic) terins in the convection-dispersion equation, the
transport equation is best decomposed into a mixed problem consisting of a purc
convection problen, followed by a pure diffusion-only problem. Methods based on this
approach are called operator-splitting or splitting-up methods [38]. Convective transport
then is solved with the Lagrangian approach, while all other terms of the transport
cquation are solved using Eulerian methods. The trajectories of the flowing particles may
be obtained with three different methods. First, Konikov and Bredehoceft [82] suggested
continuous forward particle tracking, i.c., to follow a set of particles as they move
through the flow domain. Second, Molz et al. [107) used single-step reverse particle
tracking in which the initial position of particles arriving at the end ol a time step at
fixed nodal points is calculated for each time step. Third, a combination of both
approaches as suggested by Necuman [111]. Continuous forward particle tracking method
has similar disadvantages as the Lagrangian approach since complex gcometrical regions
arc again difficult 1o handic. To obtain good results it is nccessary to follow large
number of particles which quickly lead to excessive computer time and memory. The
single-step reverse particle tracking method {107] is very straightforward, especially if
problem with numerical dispersion can be resolved [69].

A mcthod proposed by Ahlstrom et al. [1] and later used by Prickett et al. [128],
among others, represents a different way of following solute particles during conveclive-
dispersive transport. Dispersion in this casc is modeled by a so-called "random walk”
process as used for cach particle individually. The method is conceptually very simple
and can be programined relatively casy. Displacement of cach particle during each time
siep is given by a certain distance, being the sum of two velocity contributions - a
deterministic and stochastic contribution. Studics with this method indicate that it may
be necessary to use many thousands of particles in order to obtain relatively precise
results.

Still other solution methods exist, such as the use of a combination of analytical and
numcrical techniques. For cxample, Sudicky [150] modeled solutc transport using
Laplace transforms with respect to time and Galerkin finite clements for the spatial
domain. The use of Laplace transforms avoids the need for intermediate simulations
(time-stepping) between the initial condition and the points in time for which solutions
are nceded, while also less stringent requircments arc nceded for the spatial
discretization. Park and Ligget [121] developed a more gencral mcethod for solving
similar problems, i.e., the Taylor least-square technique. Recently several methods were
suggested which make use of local analytical solutions of the convection-dispersion
cquation in combination with finite diffcrences [95]. This combination of analytical and
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numerical techniques has onc important limitation. Since Laplace transforms climinate
time as an independent variable in the governing solute transport equation, all
coclficients such as water content, flow velocity, and retardation factors, must be
independent of time. This mcans that combination methods can only solve solute
transport problems during stcady-state water flow, and hence are inappropriate for
transient variably-saturated flow typical of most field situations.

4.3. MATRIX EQUATION SOLVERS

Discretization of the governing partial differential equations for water flow and solute
transport gencrally Icads to a system of linear cquations

[A]{x)={b) (23)

in which {x} is an unknown solution vector, {b} is the known right-hand side vector of
the matrix cquation, and where {A] is a sparse banded matrix which is symmetric for
water flow if the modified-Picard procedure is used but asymmetric for water flow if the
Newton-Raphson method is used. Matrix |A] is generally asymmetric for solute
transport, unless convection is not considered in the formulation. Since the water {low
cquation is most often solved with the modificd-Picard procedure and solute transport
usually considers convection, we will assume here that matrix [A] is always symmetric
for water flow, and asymmetric for solute transport.

Traditionally, matrix equations have been solved by means of such direct methods
as Gaussian climination or LU decomposition. These methods usually take advantage of
the banded nature of the coefficient matrices and, in the case of water flow, of the
symincetric properties of the matrix. Direct solution methods have several disadvantages
as compared to iterative methods. For example, they require a fixed number of
operations (depending upon the size of the matrix) which increascs approximately by the
square of the number of nodes [102]. Iterative methods, on the other hand, require a
variable number of repeated steps, with the number increasing at a much smaller rate
(about 1.5) with the size of a problem [102]. A similar reduction also holds for the
memory requirement since iterative methods do not require one 1o store non-zero matrix
clements, Memory requirements, therefore, increase at a much smaller rate with the size
of the problem when iterative solvers are used [102}. Round-off errors also represent less
of a problem for iterative methods as compared 1o direct methods. This is because
round-off errors in iterative methods are self-correcting [94). Finally, for time-dependent
problems, a reasonable approximation of the solution (i.c., the solution at the previous
time step) exists for iterative methods, but not for direct methods [94]. In general, direct
methads are more appropriate for relatively small problems, while iterative methods are
more suilable for larger problems.

Many iterative methods have been used in the past for handling large sparse matrix
cquations. These methods include Jacobi, Gauss-Scidel, alternating direction implicit
(ADI), successive over-relaxation (SOR), block successive over-relaxation (BSSOR),
successive line over-relaxation (SLOR), and strongly implicit procedures (SIP), among
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others [94]. More powerlul preconditioned accelerated iterative methods, such as the
preconditioned conjugate gradicnt method (PCG) [79, 8], werc introduced more recently.
Sudicky and Huyakorn {151} gave three advantages of the PCG procedure as compared
to other iterative methods: PCG can be readily modificd for finite element methods with
irregular grids, the method does not require itcrative paramcters, and PCG usually
outperforms its ilcrative counterparts for situations involving relatively stiff matrix
conditions. The PCG methods can be uscd only for syminctric matrices.  Since the
system of lincar equations resulting from discretization of the solute transport cquation
is nonsymmetrical, it is necessary to cither formulate the transport problem such that a
symmetric matrix results {93], or use the extension of PCG for nonsymmetrical matrices,
such as ORTHOMIN (generalized conjugate residual mcthod) (6], GMRES (genceralised
minimal residual method), bi-conjugate gradients, TFQMR (transpose-free quasi-minimal
residual algorithm), or conjugate gradient squared procedures [94, 120].

The preconditioned conjugate gradient and ORTHOMIN mcthods consist of two
essential parts: initial preconditioning, and iterative solution with cither conjugate
gradient or ORTHOMIN acceleration [102). Incomplete lower-upper (ILU) factorization
(among other methods, such as polynomial, Newton-Raphson, diagonal scaling, DKR
factorization, red-black ordering, block preconditioning, or Croute lower-upper
decomposition) can be used as preconditioning of matrix [A], which is factorized into
lower and upper triangular matrices by partial Gaussian elimination. The preconditioned
matrix is subscquently repeatedly inverted using updated solution estimates o provide
a new approximation of the solution. The orthogonalization-minimization acceleration
technique is used to update the solution estimate. This technique insures that the scarch
direction for cach new solution is orthogonal to the previous approximate solution, and
that cither the norm of the residuals (for conjugate gradient acceleration [101]) or the
sum of the squares of the residuals (for ORTHOMIN; [8)) is minimized. More details
about the two methods is given in the user’s guide of the ORTHOFEM softwarce package
(102, 94}. Letniowski [94] also gave a comprehensive review of accelerated iterative
methods, as well as preconditional techniques. The ORTHOMIN procedure [7] is
becoming increasingly popular in variably-saturated flow and contaminant transport
simulations {50, 80,143].

5. Parameter Estimation

Reliable application of computer models to field-scale flow and transport problems
implics a commensurate cffort in quantifying a large number of model parameters. As
increasingly more complicated flow and transport models are being developed, the
accuracy of future simulations may well depend upon the accuracy with which various
model parameters can be estimated. This is especially true for the unsaturated hydraulic
conductivity which is a key parameter determining the rate and direction at which water
and dissolved chemicals move in the subsurface. Accurate measurement of the hydraulic
propertics is confounded by the extreme spatial heterogeneily of the subsurface
environment. The hydraulic properties frequently also shows significant variations in
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time because of cultivation or other agricultural activities, shrink-swell phenomena of
finc-textured soil, the cffects of particle dispersion and soil crusting, and changes in the
concentration and ionic composition of the soil solution.

A varicty of laboratory and field methods are available for measuring the hydraulic
conductivity, K, or the soil water diffusivity, D, as a function of the pressurc head, A,
and/or the water content, 0 [81, 60}. Most laboratory methods are steady-state
procedures based on direct inversion of Darcy’s law. Transient methods generally
involve some type of approximation or simplification of the Richards equation. Popular
transicnt methods include the Bruce and Klute [17] horizontal infiltration method, and
various modifications thereof such as the hot-air method, and the sorptivity method.
Popular ficld methods include the instantaneous profile method, various unit-gradicnt
type approaches, sorptivity methods following ponded infiltration, the use of tension
infiltrometers, and the crust method based on steady water flow. While relatively simple
in concept, these direct measurement methods have a number of limitations that restrict
their use in practice. For example, most methods arc very lime-consuming o cxecule
because of the need to adhere 1o relatively restrictive initial and boundary conditions.
This is especially true for ficld gravity-drainage experiments involving medium- and
finc-textured soils. Methods requiring repeated steady-state flow situations, or other
equilibrium conditions are also tedious, while lincarizations and other approximations or
interpolations to allow analytic or semi-analytic inversions of the flow equation introduce
additional errors. Finally, information about uncertainty in the estimated hydraulic
paramelers is not readily obtained using dircct inversion methods.

A relatively more flexible approach for solving the inversc problem is the use of
parameter optimization methods. Optimization procedures also make it possible to
simultancously cstimate the retention and hydraulic conductivity functions from transient
flow data [84]. Early paramcter optimization studies focused primarily on solute
transport [163, 123]. Starting with the studies of Zachmann e al, [192] and Danc and
Hruska [35], the method is now increasingly being used also for estimating the
unsaturated soil hydraulic functions. Computer models applicable o one-step and mulli-
siep laboratory outflow measurements are given by [83, 159] and (401, respectively.
While initially applied primarily to laboratory Lype experiments, inverse methods are
cqually well applicable to field data, or some appropriatc combination of ficld and
laboratory data. An important advantage of inverse procedures, if formulated within the
coniext of a parameter optimization problem, is that a detailed error analysis of the
estimated parameter is more easily considered. Inverse procedures may prove to be very
appropriate for estimating regional-scale effective soil hydrautic paramcters, cither by
appropriatcly manipulating in-situ measurement of the hydraulic propertics as shown by
Feddes et al. {43], or by using remotely-sensed measurements of the soil surface water
content [45]. While parameter optimization methods pose scveral advantages, a number
ol problems related to computational efficiency, convergence, and parameter uniqueness,
remain 1o be solved, especially when many hydraulic parameters must be estimated
simultancously.

In contrast 10 direct methods, somewhat less attention has been paid to the
development of indirect methods which predict the hydraulic propertics from morc casily
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mcasured data, including water retention data, and pore- or particle-size distributions,
This is unfortunate since indirect methods generally are more convenient and far less
costly to implement. Morcover, indirect methods oftcn give hydraulic conductivity
estimates which may well be accurate cnough, or are close to being accurate enough, for
many applications. Among the indirect approaches are theoretical methods which
estimate the unsaturated hydraulic propertics from water measured soil retention data,
and the usc of pedotransfer functions which correlate the hydraulic functions with soil
texture and other data routinely available from soil survey databascs.

Theoretical methods are usually based on statistical pore-size distribution models
which assume water flow through cylindrical soil pores, and incorporate the cquations
of Darcy and Poiscuille. Scveral models for predicting the unsaturated hydraulic
conductivity from measured walcr retention data have been derived for this purpose [30,
20, 108]. Burdine’s model [20] was applicd by Brooks and Corey [16] to derive their
classical function for the unsaturated hydraulic conductivity. Numerous other approaches
have been formulated [104, 162, 134]. Because of their simplicity and casc of usc,
predictive models for K(h) or K(0) have become very popular in numecrical studics of
unsaturaicd flow using Richards’ equation.

Several attempts have been made to derive pedotransfer functions [10} which
correlate the soil hydraulic propertics to soil texture and other soils data, including bulk
density, organic matter conlent, cation exchange capacily, clay mineralogy, and/or soil
Structural information [ 184, 22, 130]. Two altcrnative approachces arc generally followed:
(1) parameters in specific hydraulic models arc corrclated directly with soil texture and
related data, and (ii) water contents at sclected pressure heads are estimated from the
surrogate soils data and subsequently used in a curve fiting cxcrcise to estimate the
complete retention function. As indicated by Thomasson and Carter | 152] and others, the
second approach has been the more popular one since retention measurcments in the past
were usually limited 1o only a few points (notably ficld capacity and the permancnt
wilting point), leading to accurate predictions for those points only, but relatively poor
estimates of other parts of the retention curve. Also, there was generally little need for
complcte descriptions of the soil hydraulic functions until the recent widespread usc of
computer models and Geographic Information Systems for a wide range of applications
in rescarch and management. Pedotransfer functions have been reasonably successful in
terms of giving approximate orders of magnitude of the hydraulic properties | 186, 153]).

6. Stochastic Transport

Therc is ample evidence 1o suggest that solutions of the classical Richards and CDE
models, no matter how refined to include the most relevant chemical and biological
processes and soil properties, fail to accurately describe transfer processes in most
natural field soils. The one major factor responsible for this failure is the overwhelming
heterogeneity of the subsurface environment. Heterogeneity occurs at a hicrarchy of
spatial and time scalcs [ 182}, ranging from microscopic scales involving time-dependent
chemical sorption and precipitation/dissolution reactions, to intermediate scales involving
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the preferential movement of water and chemicals through macropores or fractures, and
to much large scales involving the three-dimensional spatial variability of soils across
the landscape. Scveral approaches are possible to address the different types of soil
heterogenceity. On the one hand, subsurface heterogeneity may be addressed in terms of
process-based descriptions which attempt to consider the effects of heterogeneity at onc
or scveral scales (kinetic sorption, preferential flow, field-scale spatial variability). On
the other hand, subsurface hetcrogeneity is increasingly being addressed using stochastic
approaches which incorporate certain assumptions about the transport process in the
heterogeneous system.

Among the stochastic approaches currently being pursued are Monte Carlo methods,
stochastic-continuum maodels, and various stochastic-convective approaches. A common
assumption of stochastic transport models [33, 34, 77] is that parameters are treated as
random variables with values assigned according to a given probability distribution. In
practice, the stochastic approach is generally used with several simplifying assumptions,
including (1) the stationarity hypothesis which assumes that a random paramelter has the
same probability density function (pdf) at every point in the field, and (2) the ergodicity
hypothesis which states that ensemble averages can be replaced by spatial averages, and
that spatial replicates can be used to construct the appropriate pdf’s for the transport
parameters.

Montc Carlo simulations assume that the flow and transport parameters are random
variables with values assigned from a joint pdf. The water flow or solute transport
equations arc repeatedly solved using coefficient values from the assumed pdf until a
large number of possible outcomes has been generated. These outcomes are then used
to calculate sample means and variances of the underlying stochastic transfer process.
The method may be used to demonstrate, among other things, that macrodispersion in
ficld soils is affccted primarily by pore-waler velocity variations, and much less by local
dispersion phenomena [3, 125].

Stochastic-continuum models were initially used primarily in groundwater studies [53,
52, 78], but have recently also found application to vadose zone transport processes
[135]. In these models all random variables are represented by the sum of their mean
value plus random fluctuations which, when substituted into the CDE model, lead (0 a
new mean transport model with additional terms. The modified model may be evaluated
by deriving first-order approximations for the fluctuations and solved by means of
Fouricr transforms. The approach leads to, among other things, a macro-scale dispersion
cocfficient whose value is reached asymplotically as distancc and/or time increasc.
Spatial correlations of solute velocity variations characterized by its autocorrelation
function, have been shown to play important roles in the derivation of the asymptotic
convection-dispersion cquation [147].

A simpler stochastic approach arises when the field viewed as a scries of independent
vertical columns (Fig. 4), generally referred to as "stream tubes”, through which
chemicals move downward from the soil surface to the groundwater table [12]. Solute
mixing between the stream (ubes is usually assumed negligible, while transport in each
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Figure 4 Schematic illustration of a stream tube model.

convection-dispersion equation.  The mean solute concentration for an entire field is
given by the ensemble average of the local concentrations in all stream wbes. The one-
dimensional CDE (assuming perfect mixing in a plane perpendicular to the flow
dircction) and the stream-tube model (assuming no mixing between individual tubes)
may be viewed as two limiting cases for solute transport at the ficld scalc | 76].

The stochastic-convective approach was used by Simmons {140] who ncglected the
dispersion coefficient D in Eq. (4), and used the pore-water velocity and travel time as
random variables. Jury [75] initially also neglected D in his development of the transfer
function model (TFM) of solute transport. The TFM involves the use of a probability
density function, f, (1), of travel times from the soil surface down to some reference depth
L. The travel time probability density function for nany transport cxperiments is given
by a lognomnal distribution. The flux concentration in the profile is represented with a
convolution intcgral of f,(r) and the imposed flux concentration at the soil surface,
Stream-tube and refated transfer function models are expected to find increasingly wider
applications in subsurface solute transport as the underlying theory is being sirengthened
by the incorporation of a varicty of physical, chemical and biological processes |77,
136].

Several other statistical approaches exist, including the use of continuous Markov
processes, fractal-mathematics, random walk methods, and a variety of procedurcs bascd
on moment analysis. Morc work in these arcas of rescarch can be expected in the near
future,
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