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Discrete time- and length-averaged solutions
of the advection-dispersion equation

Feike J. Leij and Nobuo Toride
U.S. Salinity Laboratory, Riverside, California

Abstract. Solute concentrations obtained from displacement experiments in porous
media frequently represent discrete values as a result of averaging over a finite sampling
interval. For example, effluent curves are made up of time-averaged concentrations while
volume-averaged concentrations are obtained from core samples. The discrete
concentrations are often described by continuous solutions of macroscopic solute transport
equations such as the advection-dispersion equation (ADE). The continuous solution is
often shifted to describe the average concentration. This paper compares continuous and
time- or length-averaged solutions of the one-dimensional ADE cast in terms of flux-
averaged and resident concentrations. Expressions for the time- and length-averaged
concentrations are presented for solute applications described by Dirac delta or Heaviside
functions (instantaneous and continuous releases of the solute) using four different
combinations of solute application and detection modes. A temporal and spatial moment
analysis was conducted to compare the traditional continuous description with the discrete
time- or length-averaged approach. Graphical and tabular data are presented to evaluate
the accuracy of continuous solutions of the ADE for determining transport parameters.
Although significant errors may occur for extreme cases with low dispersion coefficients
and large sampling intervals, shifting the continuous solution by half the sampling interval
generally yields results similar to those obtained with the time- or length-averaged
analysis. An advantage of averaged concentrations is that they permit greater flexibility to
conduct experiments, since averaged concentrations provide an exact description of the
data regardless of the sampling interval.

Introduction

Mathematical models are routinely employed in studies ad-
dressing the movement and fate of chemicals in porous media.
The advection-dispersion equation (ADE) has been widely
used to describe solute transport in porous media, although
this equation is known to have certain limitations [Taylor, 19.53;
Dagan, 1989]. The ADE will be employed in this study for
idealized conditions to derive analytical solutions for one-
dimensional solute transport. Such solutions can be used for
predicting solute concentrations over different temporal or
spatial scales, for assessing the importance of various transport
processes, or for estimating transport parameters.

The correctness of mathematical solutions for a theoretical
transport problem depends on how well the boundary condi-
tions and the concentration mode can be formulated compared
to the actual experimental conditions. Frequently, we can not
precisely describe transport in the physical system, particularly
at arbitrary surfaces. Hence we will not consider the relative
merits of different boundary conditions. Ample literature has
been published on the use of first- and third-type inlet condi-
tions in conjunction with flux- and volume-averaged concen-
trations for solute application to soil columns with a uniform
initial distribution [Kreft and Zuber, 1978; Parker and van Ge-
nuchten, 1984a].

We are particularly interested in using the ADE, with a
continuous dependent variable, to analyze (discrete) results
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from solute displacement experiments. Consider the descrip-
tion of an effluent curve from a column displacement experi-
ment obtained with a fraction collector, where a new effluent
sample is collected after an incremental sampling time At has
expired [cf. van Genuchten and Wierenga, 1986]. Figure 1 dem-
onstrates two possibilities to describe the (discrete) effluent
concentration at the end of each sampling period (At = 0.4)
for a hypothetical continuous concentration (solid line): (1)
shift the curve and “sample” the effluent concentration halfway
through the sampling interval, that is, at the centroid t -
1/2At and (2) use an integrated (discrete) value C,(t) [e.g.,
Fischer et al., 1979] which serves as a running time average of
the actual concentration of the sample. This paper is primarily
concerned with exploring differences in describing solute con-
centrations with the (approximate) continuous and the (exact)
discrete solutions; both are given as dashed lines in Figure 1.
The shifted curve is continuous, while the time-averaged curve
displays a discontinuity each time a new fraction is being col-
lected; both curves will converge to the original continuous
solution if At + 0. The “observed” points of the shifted curve
will normally be different from the time-averaged points, as
shown in Figure 1, unless there is a strictly linear relationship
between solute concentration versus time during each mea-
surement interval. The distinction between the continuous and
averaged solutions will become important for larger sampling
times and for more nonlinear concentration curves (e.g., due to
a variable input or initial distribution).

The concept of time-averaged concentrations, although
fairly elementary, has received scant attention in the analysis of
solute displacement experiments. Schnabel and Richie [ 1987]
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Figure 1. Schematic of averaged (C,(t)) and shifted (C(t -
1/2At))  concentrations to describe effluent samples based
upon a continuous solution of the advection-dispersion equa-
tion (ADE) (C(t)).

investigated the bias in estimated values of the dispersion co-
efficient D as a result of time assignments in the analysis of
breakthrough curves. The experimental concentrations were
described with a continuous solution, halfway or at the end of
each sampling interval, and a discrete time-averaged value
obtained through numerical integration. Optimizations based
on the solutions halfway or at the end of the sampling interval
produced values for D that differed up to 20 and 80%,  respec-
tively, from the actual value. Such studies could also be per-
formed for discrete volume averaging.

There is a wide body of literature on averaging from the
microscopic or pore scale, where parameters vary in an irreg-
ular manner with space and time, to the macroscopic scale,
where parameters vary in a regular manner because they are
averaged over many pores [Hassanizadeh and Gray, 1979;
Cushman,  1986; Plumb and Whitaker, 1988; Dugan, 1989]. This
averaging greatly simplifies the mathematical formulation of
the problem by “filtering out” local physical phenomena. We
will ignore such averaging entirely. Our analysis concerns the
transformation from the macroscopic scale, where the concen-
tration is continuous, to the sampling scale, where the concen-
tration is discrete. In this case, transformation of the mathe-
matical problem is typically not convenient because (1) the
observation scale may vary in the course of an experiment (i.e.,
different sampling times or lengths), (2) the mathematical con-
ditions are typically known in terms of continuous rather than
discrete concentrations, (3) many solutions are already avail-
able for transport at the macroscopic sale (e.g., nonequilibrium
or multidimensional transport), and (4) the results of experi-
ments involving discrete concentrations are typically used in
macroscopic transport models. Therefore we first solve the
macroscopic problem and subsequently transform the depen-
dent variable, the solute concentration, from the continuous to
the discrete mode. We will examine discrete volume- and time-
averaged concentrations for deterministic one-dimensional
transport in homogeneous media. Since the area perpendicular
to the flow direction is uniform, the volume averaging amounts
to length averaging in our case.

Solute concentrations can be obtained with a wide variety of
techniques. Hence it is important to have a comprehensive set
of mathematical solutions suitable for different solute applica-
tion and detection modes and for different averaging proce-
dures. The first objective of this paper is to derive closed-form
expressions for length- and time-averaged concentrations using
a broad group of initial and boundary conditions involving
instantaneous (Dirac delta) or continuous (Heaviside) func-

tions. A second objective is to investigate differences in solute
concentrations, versus either depth or time, between solutions
of the ADE based on continuous (shifted) and averaged de-
scriptions. These differences will be quantified through mo-
ment analysis and curve fitting.

Analytical Expressions for Solute Concentrations
Averaging Procedures

The most widely used concept for the concentration is based
on averaging the microscopic concentration over an averaging
volume AI’.  The representative elementary volume (REV) is
the averaging volume that is sufficiently large to eliminate bias
as a result of microscale variations [cf. Bear  and Verruijt,  1987].
Solute transport quantified with the resulting resident concen-
tration C, can be described with a continuum model such as
the ADE. There is also an upper limit on the REV due to
changes in macroscopic properties (spatial variability).

The flux-averaged or flowing concentration C, is used for
characterizing transport with velocity dependent injection and
detection modes when the boundary conditions need to be
given in terms of solute fluxes rather than resident concentra-
tions [cf. Kreft and Zuber, 1986].  It is expressed as the ratio of
the solute and solvent fluxes; for steady state one-dimensional
flow this leads to [cf. Kreft and Zuber, 1978]

D aCR
cF= CR-y=

where v is the pore water velocity and x denotes coordinate
position. Differences between C, and C, are only substantial
for a Peclet number below 5 [van Genuchten and Parker, 1984].
Similar to C,, C, is considered to be a continuous variable,
but it is defined for a “representative elementary time inter-
val”. Direct measurement of C, is ordinarily not possible; C,
is primarily a mathematical entity whose value may actually be
negative [Toride  et al., 1993].

Time-averaged concentrations are obtained for a fixed po-
sition and can be defined by averaging a macroscopic concen-
tration C over time according to

1
Cr(x, t2; At) = E C(X,  t) dt At = t2 - tI (2)

The time-averaged concentration is a discrete variable with its
value dependent upon the averaging period. Length-averaged
values of a continuous concentration (C, and C,) may be
defined according to

1 XZ
CL(X2,  c hx) = E

I
C(x, t) dx Ax = x2 - x1 (3)

X1

where x1 and x2 are the boundaries of the interval over which
C is averaged (e.g., the sampling range) to obtain the discrete
C,. The dependency between averaging and averaged variable
will, arbitrarily, be expressed at the end of the sampling inter-
val. It is conceivable that a concentration is best expressed as
both a spatial and a temporal average.

Solution of the ADE for Instantaneous and Continuous
Solute Application

One-dimensional transport of a nonreactive solute species
during steady flow can be modeled with the ADE as





1716 LEIJ AND TORIDE: ADVECTION-DISPERSION EQUATION SOLUTIONS

leached downward with solute-free water. The accompanying Dirac application (compare Appendix B), respectively. The
conditions are shown for cases 3 and 4, with a respective solutions were obtained with the table of Laplace  transforms
zero-flux and zero-concentration condition at the inlet. given by van Genuchten and Alves [1982].

Solutions for an arbitrary initial condition f( x) or boundary
condition g(t) can be readily obtained from the solutions for
the Dirac delta function using a Green’s function approach.
Integration of the results in Appendix B yields the respective
expressions

The solutions in Appendices C and D provide an exact
description for the (discrete) time- and length-averaged con-
centrations as a result of continuous or instantaneous solute
application. Commonly, the continuous solutions are shifted
along the t or x coordinate axes to analyze experimental con-
centration profiles according to

C(x, t) =
m fb - rl)

(4nDt) l/2 exp [ - (‘~DyL)z]  drl (11)
-m

C(x, t) =
m f(x - 11)

(4TDt) 112exp [ -(9~D~‘z]
-cc

(12)

-&exp($)  erfc(s)] dT (13)

C(x, t) = (14)

Solutions for a combined initial and boundary value problem
are obtained by summing up the individual solutions according
to the superposition principle.

Time- and Length-Averaged Concentrations

Time- and length-averaged concentrations can be obtained
by substituting the macroscopic concentrations into (2) and
(3), respectively. The alternative of applying the time- or
length-averaged operator to the entire mathematical problem,
as is customarily done to transform the intractable microscopic
problem to a more manageable macroscopic problem, and the
subsequent solution of the discrete concentration does not
appear convenient, as was explained in the introduction. Ex-
pressions for C, and C, can be readily derived for the cases
presented in Appendices A and B using the Laplace  transform
with respect to time. Time-averaged concentrations were ob-
tained according to [Spiegel, 1991]

The length-averaged solution was derived by carrying out the
integration with respect to distance in the temporal Laplace
domain followed by inversion to give

Ax) = & .9,-l
x2

CL(XZ,  t; c’(x,  s) dx 1 (16)

The procedure of using results in the Laplace  domain may be
particularly beneficial for more complicated (linear) transport
problems than the one given by (4).

Appendices C and D list the time- and length-averaged
concentrations for a Heaviside (compare Appendix A) and a

C&X, t) = C(x, t2 - kAt)

C&x, t) = C(x, - kAx, t) (Osks 1 )  (17)

where the subscripts ST and SL denote a shift in time or length,
respectively. Typically, k = l/2; the effluent concentration at
the final time t, is then described with the continuous solution
using the arithmetic mean of the initial and final sampling
times as independent variable. Similarly, the concentration
obtained from a core sample is described with the concentra-
tion using the centroid of the core as independent variable.

A discrete spatial and temporal moment analysis was con-
ducted to quantify differences between the averaged and
shifted concentration profiles for a Dirac distribution. Values
for the “moments” of the averaged and shifted profiles were
determined numerically from the theoretical concentrations at
the end of each sampling interval, assuming the same model
parameters. Temporal and spatial moments of the averaged
and shifted points were calculated using the trapezoidal rule;
for a constant sampling interval this leads to

m;(x)  = c t:C,(x,  t,)At
i = l

(18a)

n

m;(x) = c tfCST(x,  ti - kAt) At
,=l

( 18b)

m;(t)  = c X?CL(Xi,  t)Ax
i=l

(19a)

m;(t) = c x~C,,(x,  - kAx, t) (19b)
i = l

wherep is the order of the moment (0, 1, or 2), n is the number
of sampling points, and m:(x)  and m:(t)  denote discrete
moments for concentration data shifted versus time and posi-
tion, respectively.

The moments were normalized by dividing the numerical
results according to (18) and (19) by the zeroth moment. The
zeroth moment was derived from the solutions in Appendix B
in a similar manner as C, and C, according to (15) and (16).
Expressions for m,(x), which is always equal to m/OA u, and
m,(t)  are included in Appendix B. Normalized moments MP
can be defined by dividing the regular moments with the cor-
responding zeroth moment, i.e., MP = m,lm,.

The approximate amount of solute, as predicted by the so-
lutions for the shifted or averaged concentrations, relative to
the actual amount of solute that was initially applied or present
in the column, percentage of mass recovery, is given by M,.
The mean of the solute profile, that is, the mean breakthrough
time for a temporal distribution or the mean depth for a spatial
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Table 1. Moments for Shifted and Time-Averaged Breakthrough Curves as a Result of a
Dirac Delta Application

Concentration Type*

At = 0.01 At = 0.1 At = 0.2

Moment At = 0 T S T S T S

Case 1
MO 1.000 1.000 1.000 1.000 1.000 1.000 1.001
MI 1.020 1.025 1.025 1.075 1.075 1.120 1.121
P2 0.0208 0.0208 0.0208 0.0218 0.0208 0.0241 0.0191

Case 2
M,I 1.000 1.000 1.000 1.000 1.000 1.000 1.001
MI 1.010 1.015 1.015 1.065 1.065 1.110 1.111
CL2 0.0205 0.0205 0.0205 0.0215 0.0205 0.0238 0.0188

Case 3
MO 1.000 1.000 1.000 1.000 1.000 1.000 1.001
MI 1.010 1.015 1.015 1.065 1.065 1.110 1.111
CL2 0.0203 0.0203 0.0203 0.0213 0.0203 0.0236 0.0185

Case 4
MO 1.000 1.000 1.000 1.000 1.000 1.000 1.001
MI 1.000 1.005 1.005 1.055 1.055 1.100 1.101
CL2 0.0200 0.0200 0.0200 0.0210 0.0200 0.0233 0.0182

Values are m = 100, A = 25, u = 10, D = 1, ~9 = 0.5, m, = 0.8, and x = 10.
*Time moments are based on time-averaged (T), shifted (S, k = 1/2), or continuous (At = 0)

concentrations.
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distribution, follows from M,. The second central moment or
variance is given according to

p2=M2-MT (20)

where M, and M, can be any type of normalized moment (i.e.,
shifted or averaged, spatial or temporal). The variance quan-
tifies solute spreading around the mean of the profile. Exper-
imental values for M, and M, can be used, for instance, to
determine v and D [cf. Leij and Dane, 1992].

The practice of shifting the analytical solution for describing
discrete values from core or effluent samples to estimate D was
evaluated using the relative expressions

APAX) I/d(x) - &)l
l-b(x) PC(X) (21a)

(21b)

These expressions are based on the notion that ~2’  and & are
the appropriate expressions for describing time- and length-
averaged concentrations, respectively, while & denotes the
variance of the concentration profile shifted versus time or
distance.

Applications
The first part of this section contains numerical results for

spatial and temporal moments as a function of the sampling
interval following instantaneous solute application for the four
cases in Appendix B using several values for v and D. The last
part of the section includes graphical results involving (1) the
relative difference in p2 for different sampling times and
lengths, (2) the concentration versus time for step displace-
ment using time averaging and two types of shifting (k = 0 or
OS), and (3) the use of length-averaged concentrations for

diffusion experiments ( v = 0). Note that no units are provided
for the parameters in these hypothetical examples; any consis-
tent set can be used (e.g., centimeters for x and days for t).

Table 1 contains values for the temporal moments M,, M,,
and p2 for different sampling times At and a relatively small
dispersivity (D/V = 0.1). The moments are calculated from
time-averaged (T) and shifted (S) concentrations. Continuous
moments (At + 0) were calculated using the expressions by
Kreft and Zuber [1978]. Although there are some quantitative
differences between the four solutions, moments predicted ac-
cording to each solution show a similar behavior for different
sample times. The value for M, is always equal to unity for
time-averaged (T) moments while M, for shifted (S) mo-
ments starts fluctuating slightly at At = 0.2. Values for M, are
quite similar for the time-averaged and shifted concentrations.
The value of M, tends to increase with the sampling time
period (about 10% when At = 0.2). Differences in p2 are
slightly more pronounced; p(*.z  increases slightly but steadily for
time-averaged concentrations, whereas it is more variable for
shifted concentrations.

Table 2 shows results for the zeroth-, first-, and second-order
spatial moments for case 3 in Appendix B, that is, instanta-
neous solute application at t = 0 with observations in the
resident mode. The moments, shown for four sampling lengths
Ax, were calculated from length-averaged and shifted concen-
trations using four combinations of v, D, and t (i.e., the time
between solute application and sampling). If length-averaged
concentrations are used, M, equals unity except for the last
case (vt/L  = 0.5 and D = 100), where part of the solute has
already moved beyond x = L (the maximum depth for the
moment calculation). The values for the shifted moments tend
increasingly to deviate from the length-averaged moments,
where Ax increases, particularly for smaller D. The shifted
points, as predicted by the continuous solution, may not be
representative for the observations; a few poorly positioned
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Table 2. Moments for Shifted and Length-Averaged Breakthrough Curves as a Result of
Dirac Delta Application for Flux Injection (FI) and Resident Detection (RD)

Concentration Type*

Ax=1 Ax=5 Ax = 10 Ax = 20

Moment L S L S L S L S

t=l,D=l
MCI 1.000 1.000 1.000 0.585 1.000 0.010 1.000 5.670
M, 10.60 10.60 12.64 7.50 15.28 0.17 20.00 113.39
M, 114.4 114.3 166.0 99.7 258.4 3.0 400.0 2267.9

t = 1, D = 100
Mo 1.000 1.000 1.000 1.002 1.000 1.009 1.000 1.031
M, 20.50 17.70 19.74 19.73 22.37 22.33 27.87 27.91
M, 542.7 425.4 502.4 500.2 614.7 605.7 895.1 857.5

t=5,D=l
M0 1.000 1.000 1.000 0.999 1.000 0.722 1.000 2.526
M, 50.60 50.60 52.60 52.56 55.13 39.88 60.00 151.54
M2 2570.4 2570.3 2778.8 2774.9 3064.4 2221.5 3601.0 9092.3

t = 5, D = 1 0 0
M0 0.920 0.920 0.920 0.920 0.920 0.921 0.920 0.926
M, 50.98 50.97 52.81 52.83 55.09 55.20 59.60 60.11
M, 3321.5 3321.0 3528.9 3530.0 3798.1 3804.9 4368.5 4402.7

Values are m = 50, A = 10, 6 = 0.5, v = 10, and L = 100.
*Solute concentration according to length-averaged (L) expression in Appendix D or shifted (S)

expression in Appendix B.

sampling depths may lead to large differences between the
shifted and actual concentration values. The differences in
“length-averaged” and “shifted” values of either M, or M,
show a similar behavior as for M, with increased deviations for
smaller D and greater AX.

The bias in D as a result of shifting the solution of the ADE
can be illustrated by plotting the relative difference in CL*, as
given by (21), versus vAt or Ax. Figure 2 shows A~Z(~)/~2(~)
as a function of vAt  for instantaneous solute application to a
semi-infinite column with both application (at x = 0) and
detection (at x = 10) in the flux mode (case 4 in Appendix B).
A value of vAt  = 1 cm in this example would amount to an
effluent volume of 12.5 cm3.  The solid line is for a relatively
small dispersivity of 0.1, while the dashed line is for a higher
dispersivity of 10. The variations in pcLz depend on how well the
sampling can capture the behavior of the breakthrough curve
for a particular sampling schedule at a certain position. The
relative error for a dispersivity of 10 is quite low, with a max-

1E+2 I ’ ’ . ’
- D/v = 0.1

. . . . ./,’
lE-3,  I . , I I I .

0 1 2
VAt

Figure 2. Relative difference in variance (A&pZ)  between
the time-averaged and shifted concentration (k = 0.5) atx =
10 for the fourth case of a Dirac injection, as a function of
sampling time (-vAt)  using D/v = 0.1 or 10 (0 = 0.5, m =
100, A = 25).

imum relative difference of only 1% at vAt  = 2, the corre-
sponding error for the lower dispersivity of 0.1 is about 22%,
while the error for vAt  = 1 is 4%. This error will likely
increase for more complex solute applications than the Dirac
function.

Figure 3 shows similar relationships for the determination of
the concentration versus depth, for example, by soil coring.
The mathematical conditions for instantaneous solute applica-
tion are probably best described with case 3 in Appendix B.
Figure 3 shows ApZ(t)/k2(t)  as a function of sample length AX

for two values of vt/L and two values for D. The relative error
decreases when the solute peak travels a greater distance in the
medium, as expressed by the dimensionless time vt/L and
when dispersion increases. For a core length of 6 cm the
relative error in ~~ varies between 0.2 and 8.4% for this ex-
ample, but considerably greater discrepancies are obtained for
larger sampling lengths. If, instead of the centroid of the sam-
ple, another position is used as independent variable in the

IE-2
. . . . . . . . ~.,rJ&*.rJ.5

lE-2, . , 8 I ,

0 5 10 15 20
A x

Figure 3. Relative difference in variance (A&&  between
the length-averaged and shifted concentration (k = 0.5) for
the third case of a Dirac injection, as a function of sampling
length (Ax) using vt/L = 0.1 or 0.5 (v = 10 and L = 100),
and D = 25 or 100, with A = 10 and 0 = 0.5.
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Figure 4. Predicted breakthrough points at x = 10 for the fourth case of a Heaviside application using the
time-averaged concentration C, and the continuous solution halfway C, and at the end C, of the sampling
interval (shifted with k = l/2 and 0, respectively) with (a) u = 10, D = 2, and At = 0.1; (b) u = 10,
D = 2, and At = 0.5; (c) v = 10, D = 20, and At = 0.1; and (d) v = 10, D = 20, and At = 0.5.
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continuous expression for the concentration, the error will
normally increase.

The role of the invoked mathematical solution to model
discrete data points can also be illustrated by comparing time-
or length-averaged concentrations obtained with shifted con-
centration curves. Figure 4 shows breakthrough data for a step
input (case 4 in Appendix A), as predicted for two sampling
times (At = 0.1 or 0.5) and two dispersion coefficients (D =
2 or 20) at x = 10 with v = 10. The effluent data are
predicted according to case 4 at the sampling times with the
time-averaged concentration in Appendix C, denoted as C,,
and the shifted (continuous) concentration from Appendix A.
Results are for the “halfway” solution C, = C&x, t, -
0.5At) and the “end” solution C, = C,,(x,  t2). While
obviously erroneous, the latter practice was included for illus-
trative purposes following the work by Schnabel and Richie
[1987]. Figure 4a displays the data for At = 0.1; if time is
expressed in days, this example corresponds to an effluent
volume of 10 cm3 for A = 25 cm2 and 0 = 0.4 cm”/cm”.  The
C, and C, profiles are virtually identical, while the C, curve
predicts earlier breakthrough. Figure 4b is for a larger sam-
pling time interval At = 0.5; the C, and C, profiles show a
relatively greater difference. The use of C, is completely in-
appropriate here for describing effluent data. The closest
match between C,, CE,  and C, is obtained in Figure 4c for a

relatively small At and a large D (hence a larger time range
was selected to plot the results). Even C, describes the data
fairly well. Figure 4d also pertains to a fairly large D but with
a larger sampling interval.

The ramifications of using a continuous model in parameter
optimization procedures involving discrete data were assessed
by describing the time-averaged data from the example illus-
trated in Figure 4 with the two continuous solutions (k = 0 or
0.5). Table 3 shows the fitted values for v and D, as obtained
with the program CXTFIT [Parkerand van Genuchten, 1984b],
along with the correct parameter values which also served as
initial estimates in the optimization procedure. The difference
between fitted and actual parameters was the greatest for C,
(no shifting), with a poorer fit for the larger sampling interval.
Notice that the curve fitting, in effect, creates it own shift by
consistently underestimating V. Alternatively, the fit could
have been improved by including the retardation factor R in
the optimization procedure [cf. Barty, 1988]. On the other
hand, if v was excluded from the optimization because it was
obtained independently, the results would have been worse. x
considerably better fit was achieved for C,; the best fit is again
for the smaller sampling time (At = 0.1) and the higher
dispersion coefficient (D = 20).

The use of length averaging is presented in a somewhat
different context, namely, for the determination of diffusion

Table 3. Fitting z, and D to Discrete Experimental (Time-Averaged) Data From Figure 4
With the Continuous Solutions C, and CH

Case At

Actual Value

v D

Fitted With C,

v D

Fitted With C,

v D

Figure 4a 0.1 10.0 2.00 9.524 1.761 9.996 2.042
Figure 4b 0.5 10.0 2.00 8.016 1.633 10.029 3.260
Figure 4c 0.1 10.0 20.0 9.559 17.02 9.995 20.04
Figure 4d 0.5 10.0 20.0 8.051 10.34 9.872 20.73
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Ax =4
t
I-

-10 0 10

cH

-10 0 10

Figure 5. Predicted concentrations as a result of diffusion
with D = 0.5 at t = 5 using the discrete analysis with the
length-averaged concentration C, or the shifted concentration
C, for a sampling interval (top) AX = 10 or (middle) AX = 4
and (bottom) the continuous analysis with the macroscopic
concentration according to case 1 of Appendix A.

coefficients through destructive sampling. This application
serves as an example for many cases where the use of explicit
expressions for time- or length-averaged concentrations may
improve the estimation of model parameters and reduce the
time and expenses associated with experimental procedures. A
value for D is determined by bringing two columns together at
t=OsuchthatC=C,forx<OandC=Oforx>Oat
that time; the columns are sectioned after a certain amount of
time has elapsed [e.g., Van  Rees et al., 1991].  The mathematical
solution of the problem is subsequently fitted to the solute
concentration of each segment to determine D. This scenario
was modeled with a modified solution of case 1 in Appendix A
( v = 0), assuming a diffusion coefficient D = 0.5. Figure 5
shows schematics of the solute profile at t = 5. The macro-
scopic concentration distribution, as predicted with the contin-
uous solution, is shown at the bottom, whereas the top two
sketches pertain to the length-averaged (C,) and shifted (C,)
concentrations. We note again that C, provides an exact de-
scription of the concentration at the centroid of the core, the
approximation with C, can be made quite accurate but at the
expense of taking and analyzing more samples. In many cases
the value of D is not precisely known a priori, in which case
one may be inclined to overestimate the required number of
samples. A description with length-averaged concentrations
offers flexibility in deciding when to sample and what sample
size to use. Of course, a certain minimum number of samples
may need to be taken because of limitations in experimental
resolution or nonlinear optimization and to check assumptions
regarding boundary conditions. The use of time- and length-
averaged concentrations may also be fruitful for other trans-
port problems because of added flexibility in the choice of
sample size and possibly an improved mathematical analysis of
the observations.

Summary and Conclusions
Several averaging procedures were defined for the solute

concentration. These procedures arise during the prediction
and analysis of experimental solute transport data in porous

media as described with the advection-dispersion equation.
Solute concentrations are commonly expressed in terms of
resident or flux modes, which are both continuous dependent
variables in the ADE. The selection of either a resident or
flux-averaged concentration depends on the invoked or as-
sumed solute application and detection modes. The selection,
in turn, determines the formulation of the boundary condi-
tions. Analytical solutions, including intermediate solutions in
the Laplace  or Fourier domain, were given in Appendices A
and B using four combinations of detection and injection
modes for continuous and instantaneous solute application.

Many experimental studies lead to solute concentrations
measured over larger spatial or temporal scales than those for
which the ADE is formulated (e.g., soil coring or effluent
sampling). These large scales lead to discrete experimental
concentration variables that can only be used in an approxi-
mate manner as a dependent variable in the continuous ADE.
Parameter estimation procedures based on continuous solu-
tions of the ADE will therefore only yield approximate results,
and the experimental results are better described using (inte-
gral) averaged solutions of the ADE. Expressions for the time-
and length-averaged concentrations were presented in Appen-
dices C and D (first objective).

Frequently, an (implicitly) averaged value is used for the
independent variable when fitting a continuous solution of the
ADE to experimental data. Such an approach amounts to
shifting of the ADE. A moment analysis was carried out to
compare the use of shifted and (integral) averaged expressions
for the concentration to describe experimental data points.
Values for moments that characterize mass conservation, ad-
vection, and dispersion were derived as a function of sampling
time or length using several values for v and D. The time- and
length-averaged expressions always conserved mass, whereas
the mass balance of the shifted solutions tended to fluctuate at
larger sampling intervals because of insufficient sampling
points to characterize the spatial or temporal distribution of
the solute, especially for low values of D. Higher-order mo-
ments displayed this behavior more strongly. The relative error
in the second central moment F~, which is indicative of dis-
crepancies in D when a shifted solution of the ADE is used,
was plotted as a function of sampling time. The difference in ~~
was found to be 1% if vAtID = 0.05 and D = 1, while a 4
times greater sampling time (vAt/D F= 0.2) resulted in a
similar error for D = 100. A similar analysis was also con-
ducted for length averaging; for a sample length of 5 and v =
10 an error of 5% occurred at sampling time t = 1 if D = 25,
while the error was only 0.2% at t = 5 when D = 100. Errors
in ~a grew with sampling time or length, while smaller values
for D also tended to increase these errors.

Solute concentrations were also predicted at sampling times
using the averaged expression for the concentration and using
solutions of the ADE halfway (C,) or at the end (C,) of the
sampling period. The use of C, generally leads to a poor
description of the experimental data, while C, usually resem-
bles the value according to the (exact) averaged expression. On
the basis of graphical and numerical results for solute break-
through curves, it appears that shifting the concentration pro-
file, that is, as predicted with a continuous model, by half the
sampling interval is generally a good approximation for the
actual concentration of a sample (second objective).

An advantage of averaged solutions is that they yield an
exact description of the data, provided that the transport
model is correct, thus requiring fewer samples for parameter
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