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AN ANALYTICAL SOLUTION FOR PREDICTING SOLUTE TRANSPORT
DURING PONDED INFILTRATION

K. HUANG anp M. TH. VAN GENUCHTEN

An analytical solution is presented for
one-dimensional solute transport in soil dur-
ing ponded infiltration. The pore-water ve-
locity v = ¢/6 in the convection-dispersion
transport equation was obtained by assum-
ing that the water flux density g in the soil
can be calculated with the Green-Ampt in-
filtration model, g = a + b/I, in which a and
b are constants and I is the cumulative in-
filtration rate evaluated using Philip’s two-
term infiltration equation. The water con-
tent @ was approximated by the saturated
water content, 8,. Through an appropriate
transformation, the solute transport equa-
tion for transient unsaturated flow condi-
tions was linearized and solved analytically
for a general initial concentration profile
given by an arbitrary number of straight line
segments. The solution compared well with
more complete numerical solutions of the
transport problem, as well as with several
experimental data sets.

Many numerical techniques have been devel-
oped in recent years for the purpose of providing
comprehensive quantitative descriptions of agro-
chemical transport in soils. While numerical
methods can be applied to a wide variety of soil
and water flow conditions, they generally require
extensive input information that is not always
readily available. Moreover, numerical solutions
sometimes exhibit undesired numerical oscilla-
tions and nonphysical dispersion, especially
when steep concentration fronts exist such as is
the case during ponded infiltration in initially
very dry, coarse-textured soils. Hence, analytical
solutions remain useful tools in a number of ap-
plications, including the simulation of simplified
transport scenarios in the field, carrying out sen-
sitivity analyses, estimation of important soil-hy-
draulic or solute transport parameters, and verifi-
cation of the accuracy of numerical solutions.
Compared with numerical models, analytical so-
lutions often provide more insight into the con-
ceptual behavior of the system being studied.
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In this paper we develop an approximate ana-
lytical solution for simulating solute transport in
unsaturated soil during ponded infiltration of wa-
ter and a dissolved tracer. The solution was de-
rived through an appropriate variable transfor-
mation of a transport model that uses for the
water flux density, g, a combination of the infiltra-
tion models of Green and Ampt (1911) and Philip
(1969). The proposed model improves upon pre-
vious approximate solutions (Warrick et al. 1971;
De Smedt and Wierenga 1978), which either as-
sumed q to be a constant (equal to the saturated
hydraulic conductivity) or calculated ¢ independ-
ently, using numerical techniques. The proposed
solution will be tested by means of comparisons
with numerical solutions, previously published
approximate analytical solutions, and experi-
mental data.

MATHEMATICAL PROBLEM

The partial differential equation describing
one-dimensional convective-dispersive chemical
transport in soils is given by
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where ¢ is the solution concentration ML), s
is the adsorbed concentration (MM™), 8 is the
volumetric water content (L°L?), D is the disper-
sion coefficient (L*T!), q is the volumetric flux
density (LT™), p is the bulk density (ML), z is
the distance from the soil surface (L), and t is
time (T). For simplicity, no production and decay
reactions are considered here. The adsorption
isotherm is described by a linear (or linearized)
equation of the form

s=kc )

where k is an empirical distribution coefficient
(M™'L?). Neglecting molecular diffusion, the dis-
persion coefficient is given by (Bear 1972)

D= ®
where o is the dispersivity (L). Substitution of

Egs. (2) and (3) into (1), and using the continuity
equation for water flow
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where the retardation factor R is given by
R=1+pk/6 6)

Adopting the Green-Ampt infiltration model
(Green and Ampt 1911), the infiltration rate dur-
ing ponding with a negligible depth of water on
the soil surface is given by

q=K, [1 +(6, - 19,.)%] ™

where K; is the saturated hydraulic conductivity
(L/T), 8, and 6, are the initial and final (saturated)
water contents, respectively, h, is the suction
head (negative pressure head) at the wetting
front (L), and I is the cumulative infiltration rate
(L). The above model assumes that the wetting
front can be represented by a sharp interface
separating a saturated zone above the wetting
front from a semi-infinite unsaturated zone hav-
ing a constant water content below the wetting
front. Although the wetting front itself can be
readily monitored, the suction head, h,, at the
wetting front is more difficult to determine.
Whisler and Bouwer (1970) suggested that h, be
approximated by the more easily measured air
entry value. More precisely, Bouwer (1964) sug-
gested that i,be linked to measurable soil charac-
teristics using the relationship

h,= jk,(h)dh ®

where h; is the initial pressure head (L), and k.(h)
the relative hydraulic conductivity (0 < k. < 1) as
a function of the pressure head, h. An alternative
physically based expression was later derived by
Neuman (1976) for the early stages of infiltration
as follows

h,:%J'[H g—%-)k,(h)dh )

s i

The cumulative infiltration, I, in Eq. (7) will be
approximated here with Philip’s expression for
infiltration (Philip 1969):

I=Syt+ Kt (10)

in which S is the sorptivity that can be measured
experimentally (Lin and Gray 1971) or estimated

from the diffusivity function, D(8) (L?T™!) using
(Parlange 1975)

2 8
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Neuman (1976) showed previously that Eq. (9)
is consistent with the form of Eg. (11). The set
of equations (7) and (9) through (11) gives a phys-
ics-based description of infiltration consistent
with the approximate mechanistic approach of
Green and Ampt (1911), but incorporating fea-
tures of Philip’s infiltration equation (10) and Par-
lange’s sorptivity function (11) such that the infi-
Itration rate can be linked directly to measurable
soil hydraulic parameters.
Application of the transformation

i
_[a
T_J'oedt (12)

reduces Eq. (5) to the linearized form
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Substituting Eqs. (7) and (10) into (12) and using
for 6 the saturated water content, 8;, we obtain

Kit+2(6, - 9,.)h,1n(1 + Ksﬁ]
S (14)

T =
(¢]

Note that since the Green-Ampt model implies a
uniform velocity profile within the saturated
zone, and a zero flux below the wetting front,
the transformed transport equation is only valid
between the soil surface and the wetting front.
The depth of the wetting front, z;, at time ¢ can
be estimated from the implicit Green-Ampt equa-
tion as follows

6, -9 z
t=——=+(2 —-h,In 1+—fJ 15
Ks [/ i ( h’j} ( )

This equation follows from Eq. (7), the definition
of infiltration rate as q = dI/dt, as well as the
basic assumption of the Green-Ampt model that
I=(6—86)z

ANALYTICAL SOLUTION

Equation (13) will be solved analytically for a
general initial concentration distribution given by
an arbitrary number of connecting straight lines
as shown in Fig. 1, i.e,
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where a; and b; for each line segment are given
by, respectively,
bz b= G
a; = c'— — Uiy i =
i i-1 1 z,- _ z,'_l (17)

in which ¢; is the value of initial concentration at
depth 2;(z, = 0). Note that for a step-wise initial
concentration distribution profile, all b; equal zero.

The transport problem will be solved for a
semi-infinite soil profile, i.e.,

€))

and for both a first- or concentration-type and
a third- or flux-type boundary condition at the
soil surface.

First-type boundary condition

The following equation defines a first-type inlet
condition describing the step-wise application of
a solute tracer

c
c(O,t):{C:;

in which ¢, is the applied injection time period,
and C,, and Cy, are concentrations of the injected
fluid before and after ¢,. After implementing the
transformation from ¢ to 7 in Eq. (19) and
applying Laplace transform techniques as dis-
cussed in detail by van Genuchten (1981), using
transforms listed in van Genuchten and Alves
(1982) and Spiegel (1991), we obtained the fol-
lowing solution of Eq. (13) subject to the invoked
initial and boundary conditions

0<t<t,

t>1, (19)

¢=Cy +(Cy, - Cy)
[A(zT) - A(z,T - T,)U(T
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where U(T — T,) is Heaviside’s unit function,
Ty = T(%), and
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Third-type boundary condition
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The inlet boundary condition is now given by

a qC
-6D — + qc = ol
( % 1 jo {qu-z

As pointed out by van Genuchten and Parker
(1984), among others, a third-type condition is
generally more realistic inasmuch as this condi-
tion conserves solute mass in the simulated sys-
tem. The analytical solution of Eq. (13) subject

t<t,

t>t, @D
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to Eqgs. (16), (18), and (21) is again given by Eq.
(20) in which now

AlzT)= %erfc[ :7%]
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F1G. 1. General initial concentration distribution
used for the analytical solution.
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APPLICATIONS

We now present three examples illustrating the
applicability of the analytical solution to several
infiltration scenarios. The examples also serve as
tests of the accuracy of the proposed solution by
showing comparisons against numerical results,
previous approximate analytical solutions, and
experimental data.

Example 1: Infiltration into a coarse-textured
soil

The first example considers solute transport in
a relatively coarse-textured soil. The soil hydrau-
lic properties were described with the parametric
functions (van Genuchten 1980)
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in which K, = 50 cnvh, 6, = 0.4, 6, = 0.05 (6, is
the residual water content), o, = 0.05 cm™! and
n = 3.0 are empirical shape parameters, and m =
1 = 1/n. The transport experiment assumed that
the soil was initially solute free, i.e., ¢(x, 0) = 0,
and had a uniform initial volumetric water con-
tent, 0;, of 0.051. The dispersivity, a, was assumed
to be 2.727 cm, and no adsorption was considered
(R = 1). The suction head, h;, of the wetting front
as calculated with Eq. (9) was 10.85 cm, whereas
the sorptivity, S, according to Eq. (11), was found
to be 19.45 cm/h*%. Assuming ponding, the irriga-
tion water contained a tracer at a concentration
of 1 g/lem® (Cy, = 1) for a period of 0.25 h (f;, =
0.25), after which the irrigation water was again
free of solute (Cy = 0). Figure 2 compares the
analytical solution using a third-type boundary
condition, with numerical results generated with
the HYDRUS code of Kool and van Genuchten
(1991) based on the Richards equations for tran-
sient, variably saturated water flow and the con-
vection-dispersion equation for solute transport.
The figure shows close agreement between the
analytical and numerical solutions, with the ana-
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FiG. 2. Comparison cf the proposed analytical solu-
tion with numerical results for solute transport in a
coarse-textured soil.

lytical solution being slightly ahead of the numer-
ical simulation. The calculations for this case, as
well as for the examples below, were obtained
using Eq. (9) for the suction head k, of the wetting
front. Using Eq. (8) rather than (9) did not lead to
a visibly different curve in Fig. 2. For the current

example 1, Eq. (9) produced a value of 10.85 for

hy, which is close to the value of 11.3 cm gener-
ated with Eq. (8).

Example 2: Column infiltration

A laboratory solute transport experiment dur-
ing ponded infiltration was carried out by Bresler
and Laufer (1974) using a 45-cm-long soil column
filled with Gilat loam. The soil had an initial water
content of 0.03 and an initial chioride concentra-
tion of 165 meq/L. The column was flood-irrigated
for about 0.35 hours, such that 3 cm of water
containing 10 meg/L CaCl, infiltrated. Other pa-
rameters included K; = 0.72 crw/h, 6, = 0.44, and
o = 0.08 cm. The suction head of the wetting
front was h, = 30 cm (Eq. 9), and S equaled 4.645
cvhr'?, These values for k,and S were estimated
from the hydraulic properties of Gilat loam as
shown in Fig. 1 of Bresler et al. (1971). Figure 3
shows good agreement between the analytical
solution and the experimental data. The analyti-
cal solution also closely approximated the nu-
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FIG. 3. Observed (diamonds) and calculated chloride
concentration distributions during ponded infiltration.
The solid line denotes the proposed analytical solution,
whereas the dashed line represents the numerical solu-
tion of Bresler and Laufer (1974).
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merical results obtained by Bresler and Laufer
(1974).

Example 3: Field infiltration

The model was also tested against results from
a field infiltration experiment reported pre-
viously by Warrick et al. (1971). The experiment
involved the application of a 7.62-cm pulse of
water having a cencentration of 0.2 N CaCl, (¢, =
2.8 h), followed by 22.9 cm of solute-free water.
The soil profile was assumed to have a constant
initial water content of 0.2 and a saturated water
content at the soil surface of 0.38. No adsorption
or ion exclusion was considered in the calcula-
tions. Using the measured hydraulic functions
0(h) and K(B) (Figs. 2 and 3 of Warrick et al.
1971), the values of h; and S were estimated to
be 10.2 cm and 2.375 emv/h'?, respectively. The
dispersivity was assumed to be 1.02 cm (De
Smedt and Wierenga 1978), although Bresler
(1973) used somewhat lower values. Figure 4
shows that our analytical solution agrees closely
with the complete numerical solution of van Gen-
uchten (1982) for essentially the same transport
problem (the initial water content profiles dif-
fered slightly). The analytical solution also
agreed closely with an approximate solution pre-
viously obtained by De Smedt and Wierenga
(1978) and applied to the same infiltration prob-
lem. Notice that the analytically and numerically
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F1G. 4. Observed and calculated chloride concentra-
tion profiles during ponded infiltration in a Panoche
clay loam (Warrick et al. 1971).
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calculated chloride profiles all lagged behind the
measured data. Deviations between the observed
and calculated curves may be explained in terms
of anion exclusion (Bresler 1973; De Smedt and
Wierenga 1978), having imprecise estimates of
the unsaturated hydraulic properties and/or the
general problems of soil heterogeneity and pref-
erential flow.

SUMMARY AND CONCLUSIONS

The analytical solution developed in this paper
assumes that the Darcian fluid flux density in the
transport equation can be approximated using
the Green-Ampt.infiltration model combined with
Philip’s infiltration equation, whereas the water
content behind the wetting front can be taken as
the saturated (or maximum) water content dur-
ing infiltration. Using these approximations, the
unsaturated convection-dispersion transport
equation may be linearlized and solved analyti-
cally using an appropriate variation transforma-
tion. Analytical solutions were derived for both
first- and third-type boundary conditions at the
soil surface and assumed a very general initial
concentration distribution approximated by an
arbitrary number of connecting straight lines.
The analytical solution agreed well with solutions
generated with more comprehensive numerical
variably saturated flow/transport models for
three solute transport problems involving ponded
infiltration, as well as with several experimental
data sets. The results demonstrate that the ap-
proximate analytical solution provides a good ap-
proximation of solute transport during ponded
infiltration.
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