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EXIT CONDITION FOR MISCIBLE DISPLACEMENT EXPERIMENTS

J.-Y. PARLANGE', J. L. STARR? M. TH. VAN GENUCHTEN?, D. A. BARRY*, AnD
J. C. PARKER®

The one-dimensional solute transport is
analyzed with the convection-dispersion
model, including first and zeroth order ir-
reversible reaction. A simple analytical
expression is derived for the residence con-
centration which depends explicitly on the
exit conditions at the end of the soil column
or layer. The validity of the flux concen-
tration solution ignoring the finite length
of the column is also discussed by relating
the exit conditions to the Péclet number.

Consider the standard one-dimensional solute
transport equation in a column,

dc,/d, = Dd%,[/dx® — vdc,/dx — f, 1)

where c,(x,t) is the (resident) solute concentra-
tion, D the dispersion coefficient, v the average
pore-water velocity, x the distance (measured
from the entrance of the column), ¢ the time
(corrected for the retardation factor if linear
adsorption is taking place) and £, is a sink/source
term for irreversible reactions. Following Kreft
and Zuber (1978), it is convenient to introduce
the flux concentration (e.g. van Genuchten and
Parker 1984) defined as

¢ = ¢ — (D/v) dc,/ox 2)
Thus ¢, obeys the equation,

dc;/, = Dd%c,fox® — vdc,/dx
= fr + (D/v)of./ox (3)

Normally f. is taken as a function of ¢, in Eq.
(1); if we also require the corresponding term,
f- — (D/v)df,/dx, to be a function of ¢, in Eq. (3),
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then it is clear that f, must represent zeroth or
first order kinetics. Interestingly, the corre-
sponding term in Eq. (3) is also the same zeroth
or first order term; thus those two cases are
quite remarkable. The initial condition is taken
as

c{t=0,x)=0 (4)

with obviously the same condition for ¢,. The
boundary condition at x = 0 is taken as

elt,x=0)=c¢, (5)

with the corresponding condition for ¢, obtained
from Eq. (2). Note that if material is sent for a
finite time only, as is often the case in practice,
then c; goes back to zero. As long as the govern-
ing equation remains linear, it is elementary to
obtain the solution for that case once the solu-
tion for the case of Eq. (5) is known by super-
position of solution, as done, for instance, by
van Genuchten and Alves (1982).

The second boundary condition depends on
the conditions at x = L, where the solution leaves
the column. If the liquid below the column is
collected with negligible dispersion taking place
in the collector, ¢, = ¢; in the collector. Since ¢,
must be continuous at x = L, ¢, will be continu-
ous at x = L if, and only if,

(9c,/0x),= = 0 (6

Parker (1984) has discussed a mechanism giving
rise to a discontinuity in ¢, at x = L, which
“should occur in fractured or aggregated porous
media having continuous relatively large pores.”
The maximum discontinuity occurs when ¢, and
¢, within the column are unaffected by the out-
flow boundary” (Parker 1984), i.e., the concen-
tration is that obtained for a semi-infinite col-
umn.

We may note that at x = 0, condition (5) also
leads to a macroscopic discontinuity in ¢,. How-
ever this discontinuity is physically quite differ-
ent from the one that may occur at x = L. At
x = 0 the discontinuity results from a boundary
layer which becomes infinitely thin as diffusion
in the reservoir at x < 0 is neglected and no
other “mechanism” is required. However at x =
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L, ¢, would be continuous, and Eq. (6) would
hold if it were not for the presence of cracks or
other preferential paths in the column. Thus it
seems reasonable to state that, in general, we do
not know the appropriate boundary condition at
x = L and that the actual value of ¢, at x = L
will lie in general somewhere below the value
predicted by Eq. (6) and above the value ob-
tained for a semi-infinite column.

It might be tempting to state that if there is a
significant discontinuity at x = L, then Eq. (1)
is not necessarily the governing equation, but
two or more transport equations for different
paths should be considered as considered, for
instance, by Gaudet et al. (1977) when water
can be divided into mobile and immobile com-
ponents (as is basically the case in Parker’s
example, 1984). However, even when Eq. (1) is
the appropriate model, there is still no guarantee
that Eq. (6) will hold exactly, i.e., the variability
in pore sizes could still lead to a value of ¢, lower
than the prediction of Eq. (6) even if the discon-
tinuity is less than calculated from the semi-
infinite solution.

This dilemma in the appropriate boundary
condition at x = L is closely linked to the value
of the Péclet number

P, =vL/D, (7N

where v is the average fluid velocity, and C is
basically obtained by curve fitting. Scheidegger
(1957) (see also the illuminating chapter 10 of
Bear 1972) on hydrodynamic dispersion points
out that D can have two limiting behaviors:

1) The first is when dispersion results pri-
marily from molecular transverse diffusion
(e.g., between mobile and immobile water).

2) The other is when mixing takes place at
the junction between different paths (e.g.,
around a sand grain).

In case (1) D is essentially proportional to v?/
Dy (Dy being the molecular diffusion), and in
case (2) D is essentially proportional to va,
where a is the characteristic grain size. Also, in
case (1) P, will often be smaller than one (it is
equal to 2.5 X 107* in Parker’s experiment) and
greater than one in case (2). Of course in many
cases a mixture of (1) and (2) will take place.
When dispersion follows case (1), upstream dis-
persion at x = L is irrelevant, and the semi-
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infinite column solution holds; whereas in case
(2), Eq. (6) will hold. Thus, even though in
general we do not know the boundary condition
at x = L, the value of the Péclet number will
provide some information on whether Eq. (6) or
the semi-infinite column solution will be more
accurate. This is the reason why Barry and
Parker (1987) (following Kreft 1981) chose con-
tinuity of ¢, at the interfaces in a layered medium
as the preferred boundary condition rather than
take the solution for a semi-infinite medium in
each layer, although the latter has also been
used (see Kreft 1981).

In conclusion, there is in general a real am-
biguity in the boundary condition for c, at x =
L. Only in extreme cases can the condition be
written with confidence, with the normal situa-
tion lying between those two extremes.

BREAKTHROUGH CURVE FOR P, = 4

Case of no Irreversible Reaction

Let us consider the solution to Eq. (3) with
f- = 0 and a semi-infinite column; when Egs. (4)
and (5) hold, we hav_e

x —tv vx x+ tv
2¢,/c, = erfc + — erfi 8
4 et Dy ©

It has been observed (Parlange and Starr 1975)
that, if P, = 4, the breakthrough curve obtained
from Eq. (8), which has been used routinely in
the past (Nielsen and Biggar 1962) agrees closely
with the solution of Eq. (1) when condition (6)
is used, van Genuchten and Parker (1984)
reached the same conclusion “provided the col-
umn Péclet number is not much less than 5.”
Still, ¢, and ¢, differ within the column unless P.
is very large, e.g., P, = 16 (Parlange and Starr
1975).

We are now going to probe the reason for Eq.
(8) predicting the breakthrough curve accurately
when Eq. (6) holds. More generally, we shall
argue that Eq. (8) holds whatever the boundary
condition at x = L is as long as P, = 4. In so
doing, we shall obtain a convenient expression
for ¢, within the column. Finally in the next
section we shall generalize the results for zeroth
and first order kinetics.

Using Eq. (8) for ¢;, Eq. (2) yields ¢, or, in
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general,
¢ _ J L+t v
Py LN exp D lerfc 7in: D VDt
[__1_‘3’”__(_5_“11)2 Ltw o I+m]}
P TTaDe T Gabe T Jabe
x-Hu v
+ex erfc—==— \/’I-)E
D { Jane
1 (x+0) x4t .r+tu][
|l—=exp- erfc —— 9
[J; e T vand]

where ) is a constant of integration, such that,
with c, = ¢(¢t, x; \)

dc,(t, L; \)
dx

e (t, L; 0)

where dc,/d0x at x = L and A = 0 is the minimum
value possible for the gradient of ¢, when back
diffusion at x = L is negligible. Hence, ¢, in Eq.
{9) appears as a linear interpolation between the
two extreme values of ¢, when A = 0 and 1. Note
that A can be a function of time if desired. The
parameter A varies between 0 and 1: for A = 1
we have the limiting case when Eq. (6) holds,
and for A = 0 the profile within the column is
unaffected by upstream diffusion at x = L. Fig.
1 illustrates the results for Péclet numbers equal
to 4, 8, and 16 and different dimensionless times
T = tv?/D. The left side gives the whole profile
for ¢, and ¢, for A = 0 and 1 (the extreme cases).
The right side gives the details for other values
of A near x = L. Away from x = L all ¢, profiles
merge into one curve, exhibiting the typical
boundary layer behavior discussed in Parlange
and Starr (1975).

The left side is hardly distinguishable from
Fig. 2 in Parlange and Starr (1975). The only
difference is that here ¢, and ¢, for A = 1 are
strictly equal, whereas they are very slightly
different in Fig. 2, because in that case we cal-
culated ¢, (A = 1) using Eq. (1) (with f, = 0)
while here we use Eq. (2) with ¢, obtained for a
semi-infinite column. Thus when Eq. (6) holds
exactly (case considered by Parlange and Starr
1975) Eq. (8) is only approximated true, and if
the breakthrough curve is fitted with Eq. (8),
then an apparent diffusivity, Da,, is deduced
which differs slightly from the diffusivity D of
Eq. (1).

In general, if Eq. (10) is used as boundary

=(1—-M——‘;— (10) -
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condition at x = L, and Eq. (1) is solved using
boundary layer techniques for P, = 4 as in
Parlange and Starr (1975), ¢, thus obtained will
differ slightly from ¢, in Eq. (9), and at x = L it
will differ slightly from ¢, (x = L) given in Eq.
(8). Then curve fitting to this ¢, with¢;at x = L
will again yield a D,, different from D in Eq.
(1), with, in general,

D = D,.,/{1 = AD,./Lv] (1)

which reduces to Eq. (15) of Parlange and Starr
(1975), correcting an obvious misprint in the
latter. (See also Eq. (22) of Barry and Parker
(1984), which agrees with the equation above for
A = 1 and P. sufficiently large. Obviously D =
D,, for A = 0 since Eqgs. (8) and (9) are then the
exact solution for a semi-infinite column.

Curve fitting breakthrough curves with Eq.
(8) to estimate D yields a D,,, which will be
reliable if P, = vL/D,, is greater than 4. Al-
though the corresponding ¢, within the column
is not exactly known, this has little influence on
the breakthrough curve. However, from the dis-
cussion above on the hydrodynamic dispersion,
we expect that X is close, if not exactly equal to,
1, especially if P. is largely independent of v.

On the other hand if curve fitting Eq. (8)
yields P. = vL/D,, which is less than 1, then the
result for D,, is reliable only if X is close to zero,
i.e., when there is no back diffusion at x = L.
Since there is no way to know a priori whether
this is true, use of Eq. (8) is unreliable for low
P.. However, if in addition P, is inversely pro-
portional to v, suggesting that the flow through
cracks is dominant, then the result might be
meaningful.

To understand the limitations of Egs. (8) and
(9) as a solution to the problem when P, is not
too large, e.g., less than 4, it must be emphasized
that even though Eq. (9) is consistent with Eq.
(2) it does not satisfy Eq. (1) (with £, = 0) unless

= 0. The following analysis reconfirms all
above results from a different point of view. In
addition it is especially well adapted to the study
of irreversible effects, which we now consider.

Case of Irreversible Reactions

As shown earlier, if f, in Eq. (1) is a function
of ¢, only, the corresponding form in Eq. (3),
f. — D/v 3f./3x, will be a function of ¢, only, if
and only if, f, = ke, or f, = ke, (k being constant),
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FiG. 1. Profiles in a column for Péclet numbers,
P, = vL/D, equal to 4, 8, and 16. The left side gives the results for dimensionless times T = vt/D equal to P,
and P./4. At each time the top curve is ¢, from Eq. (8), the bottom curve is ¢, for A = 0, and the intermediary
one corresponds to A = 1. (For P, = 8 and 16 and T = P,/4, c, is independent of \.) The right side gives the
details of the profiles near the end of the column for T = P,, and ¢, for A = 0.25, 0.50, 0.75 in addition to A = 0
and 1. The top curve is still ¢,.
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or a linear combination of the two. Then, the
irreversible reaction in Eq. (3) follows the same
zeroth and first order kinetics. To simplify the
analysis we shall call ¢, as before, the flux con-
centration for the semi-infinite column with ¢,
obeying Eqgs. (2) and (10). Since ¢, depends on
the choice of A\, we shall call ¢, and c,, the
solutions when X = 1 and 0, respectively. Again,
by letting £, be zero, the following results apply
to the case of no irreversible reaction as well.

From Eq. (2) we have,
vx)
xp (— D) dx

(12)

vx

Co = ¢; + exp (5) a_C!

9% ¢

L
3 -
c,.=c,+exp%f —c_lexp—-Edf

ox D (13)

Thus

vix = L) {dce
plazl(fe) gy

and in general to satisfy condition (10)

D
€ — Cp = —— €X
v

¢ = (1 = Nco + A,y (15)

which can also be written,

vix— L)
D

“[edx = L) - colx = L)] (16)

which is especially convenient since ¢, and c,
are known exactly for zeroth and first order
kinetics (see Appendix). Note that for P, =
vL/D = 4, c, approaches a single curve inde-
pendently of A when x is sufficiently less than
L, as observed in Fig. 1. Again this boundary
layer behavior was the basis for the approach of
Parlange and Starr (1975, 1978) Parlange et al.
(1982), although Eq. (16) is obtained more di-
rectly.

To probe more deeply the reasons for the
validity of Eq. (16), let us use ¢, to calculate the
left hand side of Eq. (1). We find at once that
for both zeroth and first order kinetics,

¢ = ¢+ \exp

)
;3 dx ox?
vix -~ L) (&%
= —f(c,) + A exp ——= D(——l) an
f L ax?/__,

First it is clear from Eq. (17) that the appropri-
ateness of c, as a solution remains the same
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whether irreversible reactions (zeroth and first
order) take place or not. Eq. (17) in gener-
al differs from Eq. (1) because of the term
Aexp(v(x — L)/D] D(3%/92%) x = L. Thus if A =
0, c., is the exact solution as we already knew,
while the maximum discrepancy occurs for A =
1. That is for any A # 0, and especially A = 1, <
obtained for a semi-infinite column cannot be
the exact solution for a finite column since it
leads to a c. which does not satisfy Eq. (1).
However, as illustrated in Fig. 1b, for x near L,
d’c,/dx” is much greater than Ad%,/dx?, and when
the two are of the same order for x sufficiently
less than L, then exp v(x — L)/D in Eq. (17)
takes over and ensures that the last term in that
equation is always negligible as long as P, = vL/
D = 4. We can estimate —D@’c,/dx? in Eq. (17),
using Eq. (18), i.e.,

azc, azc,o
b ax? b dax?
(x - L) (?&)
+ Avexp v —D ox )., (18)

Again &%c./dx? is the estimate of d%c,/dx? when
x is sufficiently less than L, whereas, approxi-
mately from Eq. (2),

v(x—-L) _[d%
otz ()

~ AU exp ___u(x — L) [aio—a—c[

D dx ax],_L' (19)

However, since

der

ox

the last term in Eq. (17) is always negligible
compared to the d%,/3x? term, as long as P, is
not too small. On the other hand if P, is small,
then Eq. (17) reduces to Eq. (1) only if X is very
small, i.e., there is a significant discontinuity in
¢ at x = L, and the flow in the column is
determined by preferential paths.

Finally, to quantify the accuracy of Eq. (16),
Table 1 presents some numerical results for c,,.
The solution is exact for A = 0 and is most
inaccurate for A = 1, especially for P, = 4 which
is the lowest Péclet number we consider. Thus,
in Table 1 we consider only P, = 4 and A = 1.
The exact solutions to compare with our ap-
proximations are obtained using more complex

dn _ g
dx Ox

(20)

x=I x=L
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TABLE 1
Values of c., for P, = 4 and v*t/D = 4 as a function of vx/D. Second column corresponds to Eq. (9), fourth to Eq.
(16) for zeroth order kinetics with kL/v = 0.2, sixth to Eq. (16) for first order kinetics with kLfv = 1. The third,
fifth and seventh columns give the corresponding exact solutions from van Genuchten and Alves (1982)

Position No kinetics Zeroth order First order
v1/D e (Eq. 9) cn (exact) ¢, (Eq. 16) e (exact) ¢ (Eq. 16) ¢ (exact)
0.00 0.9459 0.9439 0.9035 0.9012 0.8173 0.8158
0.20 0.9345 0.9321 0.8837 0.8809 0.7813 0.7795
0.40 0.9220 0.9190 0.8620 0.8596 0.7466 0.7444
0.60 0.9082 0.9047 0.8412 0.8372 0.7129 0.7103
0.80 0.8933 0.8892 0.8185 0.8137 0.6804 0.6772
1.00 0.8772 0.8724 0.7949 0.7893 0.6489 0.6452
1.20 0.8600 0.8544 0.7705 0.7640 0.6185 0.6141
1.40 0.8418 0.8353 0.7454 0.7378 0.5893 0.5840
1.60 0.8227 0.8153 0.7197 0.7109 0.5611 0.5550
1.80 0.8029 0.7944 0.6935 0.6835 0.5341 0.5270
2.00 0.7825 0.7729 0.6672 0.6558 0.5083 0.5000
2.20 0.7518 0.7510 0.6409 0.6280 0.4838 0.4743
2.40 0.7411 0.7201 0.6149 0.6005 0.4608 0.4499
2.60 0.7206 0.7073 0.5896 0.5736 0.4393 0.4269
2.80 0.7007 0.6863 0.5654 0.5478 0.4196 0.4056
3.00 0.6820 0.6664 0.5429 0.5237 0.4018 0.3862
3.20 0.6648 0.6483 0.5225 0.5018 0.3863 0.3691
3.40 0.6501 0.6327 0.5050 0.4831 0.3734 0.3547
3.60 0.6384 0.6203 0.4912 0.4683 0.3635 0.3435
3.80 0.6306 0.6121 0.4821 0.4585 0.3572 0.3361
4.00 0.6277 0.6091 0.4788 0.4549 0.3549 0.3335

series solutions, which are tabulated by van
Genuchten and Alves (1982). Because of the
exponential term in Eq. (16), the error is the
greatest at x = L; thus we give the results
for T = 4 which is the time when ¢, and
¢, are very different at x = L, so that again we
look at the most critical case when the error is
greatest.

In the case of f, = 0, i.e., when Eq. (16) reduces
to Eq. (9), the approximation for c,, is remark-
ably close to the exact result, justifying its use
for P, as small as 4. The maximum absolute
error at x = L is only about 0.02.

For zeroth order kinetics we taken kL/v = 0.2
and kL/v = 1 for first order kinetics, which both
reduce the concentration at x = L significantly.
Not surprisingly this illustration shows a com-
parable error to the previous case when f, = 0,
i.e., the maximum absolute error remains about
0.02 and is not affected by the presence of irre-
versible effects.

The use of ¢, and ¢, gave a convenient and far
better insight into the structure of solutions of
the transport equation. We conclude that as long
as the Péclet number is not too small, at least 4

or more, there is no ambiguity about the break-
through curve as it is, essentially, independent
of the boundary condition at the end of the
column. Thus calculation of ¢, for a semi infinite
column yields the appropriate breakthrough
curve. There is, however, some ambiguity about
¢, within the column, especially near the exit
(up to a distance ! such that uL/D = 1), For x <
L — ! the boundary condition at the exit does
not affect ¢,. For x = L — [, the presence of
preferential paths might indeed cause a discon-
tinuity of ¢, at the exit. The discontinuity, if it
exists, has a maximum value resulting from
calculating c, for a semi-infinite column.

If the Péclet number is less than 4 it is nec-
essary to know the boundary condition at x = L
to predict the breakthrough curve, and ¢, or c,,
within the column. However if curve fitting the
solution for a semi-infinite column produces a
low Péclet number, say much less than 1, then
the solution obtained for a semi-infinite column
is again probably reliable because the back dif-
fusion becomes negligible.

Thus we have shown that the flux of material,
and the breakthrough curve, are well defined in
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most cases, but the residence concentration can
be less well defined near the exit of the column.
We have provided simple and accurate approx-
imations yielding the flux and the residence
concentration which can be used in most prac-
tical cases.

APPENDIX

Values of ¢; and ¢ for zeroth and first order
kinetics (e.g., see Parlange and Starr, 1978; and
Parlange et al. 1982)

First order
cofco = [1 + (1 + 4kD/v?)'?]!
- lexp{1/2xvD'[1— (1 + 4kD/v?)"2))
- erfe{[x— tv(1 + 4kD/v?)"?}/(4Dt)"?}]
+[1~(1+4kD/v®)"?) [exp}{1/2xeD™!
- [1+ (1 + 4kD/v?)?}jerfc|[x +
- tu(1+4kD/v?)"2}/(4Dt)' 4]
+1/2(v?*/kD) exp{(vx/D)
— ktlerfc[(x +vt)/(4Dt)'7?) (A1)
ci/co = 1/2 exp{1/2xvD~'[1 — (1 + 4kD/v?)"?))
- erfclx—tv (1 + 4kD/v?)'?)/(4Dt)' 2}
+1/2expi1/2xvD'[1+(1
+4kD/v?)'?))
- erfel{x + tv(1 + 4kD/v?)"?)/(4Dt)"?)

(A2)

Zeroth order
cro/co=P—{1+uv(x+ tv)/Dlexp(vx/D)Q
+v{t/Dr)exp[—(x — tv)*/(4Dt)]
~hkt+k(t—x/v)P— (RD/v)P—k
-exp(vx/D)Q[~D/v? + t+ (x + vt)?/2D)
+k(Dt/x)?{1/v+ (x + vt)/2D]
- exp[—{(x—vt)*/(4Dt)).
¢//co=P+expluvx/D)Q — kt
+k(t—x/v)P+k(t+x/v)exp(vx/D)Q,

(A3)

(A4)
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with
P= % erfe[(x — tv)/V4Dt| (A5)

and
Q= erfel(x + w)/VADH  (A6)

It is elementary to check that the above equa-
tions satisfy Eq. (2).
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