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Evaluation of a First-Order Water Transfer Term for Variably
Saturated Dual-Porosity Flow Models
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Variably saturated water flow in a dual-porosity medium may be described using two separate flow
equations which are coupled by means of a sink source term I',, to account for the transfer of water
between the macropore (or fracture) and soil (or rock) matrix pore systems. In this study we propose
a first-order rate expression for I',, which assumes that water transfer is proportional to the difference
in pressure head between the two pore systems. A general expression for the transfer coefficient e
was derived using Laplace transforms of the linearized horizontal flow equation. The value cf a,,
could be related to the size and shape of the matrix blocks (or soil aggregates) and to the hydraulic
conductivity K, of the matrix at the fracture/matrix interface. The transfer term I',, was evaluated by
comparing simulation results with those obtained with equivalent one- and two-dimensional single-

porosity flow models.

Accurate results were obtained when K, was evaluated using a simple

arithmetic average of the interface conductivities associated with the fracture and matrix pressure
heads. Results improved when an empirical scaling coefficient y,, was included in a,,. A single value
of 0.4 for vy,, was found to be applicable, irrespective of the hydraulic properties or the initial pressure

head of the simulated system.

INTRODUCTION

Dual- or double-porosity models, initially introduced to
simulate single-phase flow in fissured groundwater reservoirs
[e.g., Barenblatt et al., 1960], assume that a porous medium
consists of two separate but connected continua. Of these, one
continuum is associated with a system or network of fractures,
fissures, macroperes, or interaggregate pores, while the other
continuum involves the porous matrix blocks or soil aggre-
gates. Hence dual-porosity models usually involve two flow
equations which are coupled by means of a sink/source term to
account for water transfer between the pore systems.

The duai-porosity concept has been popularly used to
describe the preferential movement of water and solutes at
the macroscopic scale, a phenomenon that is widely believed
to occur in most natural (undisturbed) media fe.g., van
Genuchten et al., 1990; Gish and Shirmohammadi, 1991;
Wang, 1991]. A large number of double-porosity type mod-
els have been proposed to predict water flow in fractured
reservoirs [Barenblatt et al., 1960; Warren and Root, 1963;
Duguid and Lee, 1977; Moench, 1984] or solute transport
during both steady state flow [Coats and Smith, 1964; van
Genuchten and Wierenga, 19761 as well as transient ground-
water flow [Bibby, 1981]. Recently, attempts have been
made o extend the concept to transient water flow and
solute transport in variably saturated fractured rock forma-
tions and structured soils [Dykhuizen, 1987; Dudley et al.,
1988; Peters and Kiavetter, 1988; Jarvis et al., 1991; Chen
and Wagenet, 1992a, b: Gerke and van Genuchten, 1993].

One of the most critical components of dual-porosity
models is the source/sink term describing the exchange of
water between the fracture and the matrix pore systems. The
interactions between the two pore regions during variably
saturated flow are governed by transient, nonlinear local-
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scale flow processes at and across the fracture/matrix inter-
face. The main challenge is to capture these local-scale,
microscopic processes as best as possible into a relatively
simple term for use in a macroscopic dual-porosity model.

In this paper we propose a first-order mass transfer term to
be used in dual-porosity models for transient water flow in
variably saturated structured media. First, we will briefly
review previous dual-porosity type models, including alter-
native ways of formulating the mass transfer term. The
review includes a discussion of dual-porosity solute trans-
port models, since they suggest a method for deriving the
transfer term proposed in this paper. The transfer term will
be evaluated by comparing simulatior. results with those
obtained using equivalent one- and two-dimensional single-
porosity unsaturated flow models. For convenience, we will
consider only one spatial dimension (vertical flow), ignore
the effects of soil water hysteresis, assume that the porous
medium is rigid, consider the densities of the fluid and solid
phases to be constant, and neglect the effects of tempera-
ture, air pressure, and solute concentration on water flow.

BACKGROUND

Dual-Porosity Water Flow Models

A dual-porosity model for variably saturated, one-
dimensional vertical water flow in a structured porous me-
dium was proposed by Gerke and van Genuchren [1993]. The
model involves two Richards’ equations as follows:
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where (la) and (1b) describe the flow of water in the
fracture (subscript ) and matrix (subscript m) pore systems,
respectively. In these equations, / is the pressure head (L),
C = d6/dh is the specific water capacity (L), @ is the
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volumetric water content (L3 L7™%), K is the hydraulic
conductivity (L T™Y), w; denotes the volume of the fracture
pore system relative to that of the total soil or rock system,
z is depth taken to be positive downward (L), ¢ is time (T),
and T, is the mass transfer term for water (T~!). The
transfer term is assumed to be proportional to the difference
in pressure head between the fracture and matrix pore
systems as follows:

Fw = O‘w(hf— hm) (2)

in which a,, is a first-order mass transfer coefficient (L™
T~ 1) for water. As will be discussed later, this coefficient is
presumed here to be of the form

B
aw:;ZKa‘)'w (3)

where B is a dimensionless geometry coefficient, a is the
characteristic half width (L) of the matrix block, K, is the
effective hydraulic conductivity (L T 1) of the matrix at or
near the fracture/matrix interface, and v,, is a dimensionless
scaling factor.

The dual-porosity model given by (la) and (1b) may be
simplified for conditions where transfer of water between the
fracture and matrix pore systems is fast relative to the
movement of water in the main flow direction. By assuming
that the pressure head in the two regions equilibrate instan-
taneously, the two coupled equations (1a) and (15) may be
combined to yield a single composite flow equation of the
form [e.g., Dykhuizen, 1987; Peters and Klavetter, 1988]

d ad
Crt (1= w)Cpl —=—
[Wf f ( wf) m] 3t az

dh
. {[waf-i- (1 - wf)Km]<5;— 1>} (4)

in which the water capacities and hydraulic conductivities of
the two pore systems are weighted by wy and I — wy,
respectively. A major advantage of (4) is that the equation
avoids the difficulty of having to specify the water transfer
term while still maintaining separate hydraulic properties of
the two pore regions. In contrast, all formulations that
consider the dynamic interactions between the fracture and
matrix pore systems require an explicit description of the
water transfer term, ', .

Dual-Porosity Solute Transport Models

Similar to (1a) and (1b), solute transport in a dual-
porosity medium may be described by two coupled convec-
tion-dispersion equations [e.g., Gerke and van Genuchten,
1993] as follows:
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where ¢ is the solute concentration (M L7%), D is the
dispersion coefficient (1.7 T™Y), u is a first-order decay
coefficient (T™1), R is the retardation factor (dimensionless)
accounting for equilibrium sorption, and I'; is the solute
mass transfer term (M L™ T7!). We used for I’y the

following equation:
Fs =01- d)rwd)fcfﬁ_ dlﬂw(bmcm

+ all —wpb,(cy—cp) (6)

where
r,
d= 0.5(1 - I, #0 (7a)
Tl
and
0
br=wy rx (7b)
b= (1—wp 7 (7¢)

in which d is a dimensionless coefficient defining the direc-
tion of flow between the two pore systems, ¢, and ¢, are
dimensionless coefficients relating the solute concentrations
of the fracture and matrix pore systems to the unit solute
mass of the bulk soil, and «; is a first-order solute mass
transfer coeflicient (T ') characterizing solute exchange by
diffusion between the fracture and matrix liquid phases.
Notice that the first two terms on the right-hand side of (6)
specify the convective contribution to I'y, while the third
term gives the diffusion contribution. The coefficient «; is
very similar to the mass transfer coefficient « used previ-
ously in mobile-immobile type transport models. These
models assume steady or transient water flow in the fracture
or interaggregate pore system, and the presence of immobile
(nonmoving) water inside matrix blocks, soil aggregates, or
dead-end pores [Coats and Smith, 1964; Gaudet et al., 1977;
Brusseau and Rao, 1990]. Mobile-immobile transport mod-
els are given by the coupled set of equations [e.g., van
Genuchten and Wierenga, 1976]:

2
dcr ac,, d°cy der
ﬁ/‘RfE—+ ﬁmRm _‘:ﬁfoF_ﬁfo‘(’; (801)
acm
T R 7 = a(cf_ Cm) (8b)

where, in terms of the notation of this paper, the mobile and
immobile regions are indicated with the subscripts f for
fracture and m for matrix, respectively, v is the pore water
velocity (L T™'), and @y and 9, are mobile and immobile
water contents per unit bulk soil volurme, i.e.,

Gp=wib,=¢8; (9a)

1(}m = (] - wf)em = d)me (9b)
such that 8 = 9, + ¥, The mass transfer coefficient « in

(8b) is related to «; in (6) by
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a = asﬁm

()

Although having a conceptual basis, the mass transfer
coeficient o in (854) is usually estimated by fitting solutions
of (84) and (8h) to measured solute concentration distribu-
tions. More exact representations of transport in mobile-
immobile type dual-porosity media may be obtained with
geometry-based models which account for diffusion into
aggregates of known size and geometry. Analytical solutions
for such geometry-based models are available for a large
number of aggregate geometries [e.g., Pellett, 1966; Rasmu-
son and Neretnieks, 1980; van Genuchten, 1985]. While
conceptually attractive, the geometry-based models are
probably too complicated mathematically to be useful for
most applications. Also, field soils often contain a mixture of
aggregates of various sizes and shapes which are not easily
described with such models.

Some of the limitations of (86) may be overcome by
relating « to the diffusion properties of soil aggregates or soil
matrix blocks. This may be done by comparing the first-
order formulaticn with more comprehensive geometry-based
descriptions assuming different aggregate geometries. A
variety of techniques have been used for this purpose,
including Laplace transform comparisons [Raats, 1981; van
Genuchten and Dalion, 1986; Wilson and Dudley, 1987;
Sudicky, 1990}, moment analysis {[Parker and Valocchi,
1986, Valocchi, 1990], or the use of algebraic expansions
[Bolt, 1979]. These studies have shown that the first-order
mass transfer coefficient is of the general form

a=pY,D%la* (10)

where D7, is the effective diffusion coefficient (L2 T™!) of
the immobile pore region (the matrix pore system). Most of
the studies mentioned above derived values for 8 which
range from 3 for rectangular slabs to 15 for spherical aggre-
gates, although other studies obtained slightly different val-
ues [e.g., Dykhuizen, 1987; Skopp et al., 1981].

Mass Transfer Coefficient for Water

The exchange of water between the fracture and matrix
pore systems in dual-porosity models may be viewed as a
process which, at least mathematically, is quite similar to the
diffusional exchange of solutes in mobile-immobile models.
For flow in saturated fractured reservoirs, Barenblatt et al.
[1960] and Warren and Root [1963] assumed the water
transfer rate to be a linear function of the difference in the
averaged macroscopic pressure head between the fracture
and matrix pore systems. Employing a mobile-immobile type
dual-porosity flow model, Warren and Root [1963] proposed
a water transfer coefficient which contained, analogous to
(3), the hydraulic conductivity of the matrix pore system, a
factor reflecting the geometry of the matrix, and a charac-
teristic length of the matrix blocks. They estimated the
characteristic length using surface/volume ratios of the ma-
trix biocks. Since Warren and Root {1963] assumed quasi-
steady state flow in the matrix blocks, their transfer term is
valid only for relatively large dimensionless times. To im-
prove the formulation, Dykhuizen [1990] applied an integral
methed using two estimated pressure head profiles, one for
early times, i.c., before the (local) pressure front has reached
the center of the matrix block, and another for later times
after the front has reached the center. The analysis resulted
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in a second, larger water transfer term for use during the
early stages of the transient flow regime.

Stating the analogy of water flow to the diffusion of
solutes, Dykhuizen [1987] proposed a first-order coefficient
for water transfer into spherical aggregates. The coefficient
is similar to (3) with g8 = . Duguid and Lee [1977] derived
a more complex time-dependent expression for the water
transfer term using an analytical solution for flow from
tubular fractures into the surrounding matrix. A sirpler
transfer term for flow in saturated fractured reservoirs was
proposed by Zimmerman and Bodvarsson [1989a]. They
also applied an integral method to derive an approximate
analytical solution for diffusion of water from fractures into
spherical matrix blocks. As in the approach of Dykhuizen
[1990], a basic assumption in their analysis was that two
different linear (local) pressure head profiles in the matrix
block will develop, one before and one after the pressure
front reaches the center of the sphere. The hydraulic con-
ductivity of the matrix and a shape factor, 1/a?, where « is
the radius of the sphere, were included in the transfer term.

Zimmerman and Bodvarsson [19895] extended their ap-
proach to derive an approximate closed-form solution for
one-dimensional adsorption of water into unsaturated matrix
blocks. Zimmerman et al. [1990] subsequently obtained
analytical expressions for the absorption of water in unsat-
urated matrix blocks of various geometries. They also pro-
posed a scaling term to predict adsorption into irregularly
shaped blocks from the solutions for blocks having a known
geometry. The scaling term was assumed to be dependent on
the material properties and surface/volume relations of the
rock matrix blocks. The physically based approaches of
Zimmerman et al. [1990] are attractive since they lead to
closed-form expressions which can be incorporated in dual-
porosity models. However, the approximate instantaneous
water transfer terms are still functions of a separate (local)
time variable. This feature complicates the generality of a
numerical dual-porosity model for variably saturated media,
especially when the flow regime and boundary conditions are
highly transient.

Water transfer into aggregates of variably saturated struc-
tured soils has also been described with the help of numer-
ical solutions of the horizontal flow equation [Hoogmoed
and Bouma, 1980}, Green and Ampt approximations [Dav-
idson, 1984, 1985; Beven and Clarke, 1986], and Philip’s
one-term infiltration equation involving the sorptivity [Chen
and Wagenet, 1992a]. In addition, several quasi-empirical
Darcian-type water transfer terms have been proposed in
which flow is assumed to be proportional to the macroscopic
pressure head gradient [e.g., Workman and Skaggs, 1990;
Othmer et al., 1991] or the difference in the degree of
saturation [Jarvis et al., 1991], between the macropores and
the soil matrix. Instead of using K, in (3), these formulations
contain the hydraulic conductivity of the matrix, K,,(/1,,,),
evaluated at the matrix pressure head, &, [Workman and
Skaggs, 1990], or the minimum of K(8(/,)) and
K, (8,,(h,)) [Othmer er al., 1991]. This last study also
suggested that the characteristic length, a in (3), should be
the sum of the half widths of both pore systems, contrary to
most other studies (including this one) which assume that «
is associated primarily with the radius or half width of the
matrix structures.
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Fig. 1. Schematic illustration of rectangular porous matrix
blocks of width 2a. The blocks, arranged as parallel slabs, are
separated by a fracture pore system of width 2b.

METHODOLOGY

Derivation of the Water Transfer Coefficient

We first derive an equation for the water transfer coeffi-
cient, w,,, in (2) following an approach similar to that used by
van Genuchten and Dalton [1986] for deriving the solute
mass transfer coefficient. Let us consider a one-dimensional
vertical dual-porosity medium in which the matrix blocks
form parallel rectangular slabs (Figure 1) with a half width
between the center of the slab at x = 0, and the fracture
boundary at x = a. For the purpose of deriving an expres-
sion for «,,, we momentarily consider only horizontal flow
and ignore any vertical water movement in both pore sys-
tems. We further assume that the matrix pore system is
much iarger than the fracture system, and hence that water
transfer into the matrix is governed primarily by the dynam-
ics of water flow inside the matrix blocks. For parallel
rectangular slabs as shown in Figure 1, horizontal flow at any
point in the profile is described with

dha{x, t) 0
Cu(x; h - [

a) T =T

K (x: h Ohalx. 1) 11
at ax o5 “)T (1

0=sx=ua

where the subscript a is used to denote evaluation at the
local (soil matrix or soil aggregate) level and x is the
horizontal coordinate (L). We will compare solutions of (11)
with those based on the approximate first-order rate expres-
sion

dh (1)

Fy=0-wpC,(h,) —
Hf) z(l ) ar

= aw[hj'(t) - hm(t)] (12)
describing water transfer at the macroscopic level. Equation
(12) is consistent with (16) and (2) if vertical flow is
neglected.

First, we linearize the coefficients K, and C, in (11) to
obtain
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i - )ahau, 1) i a%h,(x, 1) .
WG ot a( ) axz =

{13)

where Ku(fz) represents the effective hydraulic conductivity
(L T~y of the soil matrix near the fracture/matrix interface,
evaluated at some average pressure head /£, to be discussed
later. Notice that the coefficients (1 — w;)C,, and K, in (13)
are now related to the bulk volume of the porous medium.
The following initial and boundary conditions are applied:

h(x, O)th,i O0<xy=<gqg (14)
dh (0, 1)/ox =0 >0 (15a)
hala, t) = hy t>0 (156)

where £, ; is the initial pressure head of the soil or rock
matrix and A, is the imposed pressure head at the fracture
boundary (x = a). Both 4, ; and hy are considered here to
be constant in time. The average macroscopic pressure head
h,,(t) of the matrix is related to the local pressure head
ho(x, t) by

l fa
h(t) = ;J hy(x, 1) dx (16)

0

Taking the Laplace transform of (13), using (14) and (154)
and (15b), solving for the Laplace transform, /%,, and
integrating over the matrix block using (16), gives the
following solution for %, in the Laplace domain [e.g.,
Carslaw and Jaeger, 1950, p. 251]:
hy— hm’i) tanh (&)

hm,i

(17
AY

hp(s) = (

& s

where s is the Laplace variable, /,, is the transformed
pressure head of the soil/rock matrix, and & = a[(1 —
wf)Cms/Ka]O'j. Substituting the first two terms of the
expansion tanh (&) = £ — £3/3 + - - -, which holds for small
¢ and hence large times, into (17) and rearranging leads to

hye {1 . a’(l - wp)C s N % |:512(1 - Wf)C,n;E

Bn(s) =
m(s) 3K, K,

N s

(18)

which is an approximate solution for /,,(s) in terms of
parameters appearing in the local flow equation (11).

We can similarly take the Laplace transform of (12}, use
again an initial pressure head £, ;, assume hy to be constant
in time, and rearrange, to obtain

]/? _/Zf 1 hm.i 1
e e A Y

where { = s(1 — w/)C,/a,. Using the approximations
V(L + )= 1— ¢and 1/(1 + {71 = ¢ for relatively small
{ gives

_ hy
hpls) = l []

(19)

B (I =wpC,,s

[s4

s w s a,,

hm,i (1 - W ')Cms
L P { o)

(20}
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which is the solution for #,,(s) derived from (12). Equating
(18) with (20) yields the following expression for o, assum-
ing rectangular slabs:

3

5 K, 2n

a, =

a
This equation has a form analogous to (10) for the solute
mass transfer coefficient. We note that the same result can
be obtained also for a time-dependent boundary condition
he(t) in (15b). The only difference is that hyls in (17) through
(20) is replaced by its Laplace transform A -

Transfer coefficients for other geometries, such as spher-
ical, solid or hollow cylindrical structures, may be derived in
the same manner. The equations are the same as those for
solute mass transfer {van Genuchten, 1985; van Genuchten
and Dalton, 1986; Sudicky, 1990; Valocchi, 1990], provided
that the effective diffusion coefficient D¥, is replaced by the
effective hydraulic conductivity K a-

Macroscopic Scaling of the Water Transfer Coefficient

The analytically derived term (21) was evaluated by di-
rectly comparing results obtained with a numerical solution
of (11) with those calculated using (12) and (21). Horizontal
infiltration of water in the matrix blocks was simulated using
a modified version of the HYDRUS code [Kool and van
Genuchten, 1991] in which the gravity term was eliminated.
HYDRUS solves (11) using a fully implicit, mass-lumped
Galerkin finite element scheme assuming linear basis func-
tions. To minimize numerical errors, extremely small space
and time steps (Ar =~ 1077 — 10~° days; Ax =5 x 107> m)
were used in the calculations.

The nonlinear first-order rate equation (12), subject to the
initial condition k,,(r = 0) = nm i» Was solved by rewriting
the equation in the following discretized form:

Ah,,
Ty= (1= w)C, —2 = @, [hy — ()]

At 22)

which in turn was approximated by the time-centered
scheme

t+ 1/2A1

h(t + Ar) = (1) + m [/’lf— h,(t + 112A1)]
(23)

where the superscript ¢ + 1/2Af on «,, indicates evaluation
at the half time level. Because of nonlinearities resulting
from C,,(6,,(k,,)) and K ,(h), (23) was solved iteratively at
each time step using a procedure analogous to that employed

TABLE t. Assumed Hydraulic Parameters for the Horizontal
and Two-Dimensional Flow Simulations
a, K,
0, 0, cem ™! n cm/d
Texture
Coarse 0.05 0.40 0.0100 2.50 1.0
Medium 0.10 0.45 0.0020 1.60 1.0
Fine 0.15 0.50 0.0005 1.25 1.0
Pore System
Matrix 0.10526 0.5 0.005 1.5 1.0526
Frac:ure 0.0 0.5 0.1 2.0 2000.0
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in HYDRUS for solving the Richards’ equation [Koo! and
van Genuchten, 1991].

In the analysis below, mass transfer, horizontal infiltra-
tion, and water flow in the matrix blocks, were simulated
using hydraulic properties (Table 1) typical of relatively fine,
medium-, and coarse-textured soils. The hydraulic functions
were described with the equations [van Genuchten, 1980]

0,— 0, 24
6=0,+— (
UL+ [ah]T )

K(S,) = K821 — (1 — §mm2 (25)

m=1-1/n; n>1

where 6, and 6; are the residual and saturated water
contents, respectively; /4 is the pressure head, K, is the
hydraulic conductivity at saturation, §, = (6 — 8.3/(9, —
6,) is effective saturation, and « and n are empirical param-
eters. To simplify the analysis, the saturated hydraulic
conductivity, K, of the matrix was set to unity. All simu-
lations assumed that the fracture system, which forms the
boundary of the soil or rock matrix block, was saturated
(hy = 0 cm).

Figure 2a compares the cumulative horizontal infiltration
curve I(T), as calculated with (11} and shown by the dashed
reference curve, with cumulative water transfer rates,
T(r) = [§ T, dt, obtained using various solutions of
approximation (12), for the medium-textured soil. The cal-
culations are for an initial pressure head # m,i of —1000 cm,
assuming rectangular matrix blocks (8 = 3) and a soil matrix
half width a of 1 cm. The results in Figure 2 were obtained
using the following five alternative methods for evaluating
the effective hydraulic conductivity K, (4) in (21):

Matrix (Mat) K,=K,h,) (26a)

Fracture (Fra) K, = K,(hy) (26b)

Arithmetic (Ari) Ko=0.5[K,(hp) + Ky (h,)] (26¢)

Geometric (Geo) K, = [K,(hp)K,(h,)]" (26d)
1 hy

Integral (Int) K,= m f;, K, (h) dh (26e)

Case Fra may be viewed as an upstream weighting method
using &1 = max (h;, h,), while Int requires numerical
integration for certain hydraulic conductivity functions.

In absolute terms (Figure 2a), the firsi-order results based
on (12) show significant deviations from the reference curve.
The closest fit was obtained with Int. The Fra and Ari
methods overpredicted, and Mat severely underestimated,
cumulative infiltration, while Geo gave results which were
somewhat intermediate. Notice that Int matched the refer-
ence curves at approximately 50% of the total infiltration.
This result was also obtained for the coarse- and fine-
textured soils and is consistent with a study by Warrick
[1991], who showed that the integral method produces
excellent estimates of the average hydraulic conductivity
when simulating horizontal infiltration using a fully dis-
cretized system. The large differences among the calculated
curves in Figure 2a demonstrate the importance of properly
evaluating the effective hydraulic conductivity K, in (21).
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Fig. 2. Cumulative horizontal infiltration 7 (dashed reference curves) and cumulative water transfer 7 ‘solid curves)
versus time 7 for a medium-textured soil in terms of (a) absolute and (b) scaled values, as calculated with different
approximations of the hydraulic conductivity K, at the fracture/matrix interface (B=3;a=1cm).

Qualitatively very similar differences among the curves were
observed for the other two soils in Table 1.

In order to reduce the observed differences between the
approximate cumulative water transfer curves and the refer-
ence results, we used a scaling method analogous to the
method used by van Genuchten [1985] for solute diffusion in
soil matrix blocks. Scaling was accomplished by defining a
relative cumulative horizontal infiltration rate as follows:

I* = [(1)/I{c) = T(1)/T(x) (27)

where I(«) and T(«) are the maximum possible amounts of
horizontal infiltration and water transfer into the finite matrix
blocks, respectively. Similarly, a relative time can be defined
as

t*:l/t().j; t0_5:f(1*)11*:0.5 (28)

where ¢* = 1 occurs at time 1 = #; 5 when half of the maximum
amount of water has infiltrated into the matrix. As shown in
Figure 2b, the effect of scaling is to force the approximate
first-order solutions to be identical to the complete solution at
the point I* = 0.5, r = f45. The scaling method was imple-
mented by simply introducing an empirical scaling factor v,
into (21) to yield (3). Formally, v,, is defined by

Yw = [({.5/2‘({.5 (29)

where the superscripts T and [ refer to the first-order
approximate and complete numerical solutions, respec-
tively.

Whereas the matrix flux potential (Int) gave the best
results in absolute terms (Figures 2a), the upstream
weighted (Fra) and arithmetic-averaged (Ari) methods after
scaling provided the best match with the reference simula-
tion over the entire range of the curves (Figure 25b). Still, the
results reflect a tendency by the first-order solutions to
initially underestimate and later, for 1* > |, to overestimate
cumulative infiltration. Deviations from the reference curves
were smallest in both sections of the curves when Fra or Ari
were used to evaluate K,. As shown by the data in Table 2,
the scaling coefficients vy, for these two methods were also
found to be less dependent on the soil hydraulic properties as
compared to other methods.

Of the various methods, notably Fra, Ari, and Int, we
judged the arithmetic averaging (Ari) method, combined
with the use of a scaling coefficient, to be the most practical
way of evaluating X, in the proposed dual-porosity models.
As opposed to upstream weighing (Fra), Ari considers the
pressure heads of both pore systems. This feature may be an
advantage when simulating water transfer in both directions
in response to varying initial and boundary conditions. Also,
the matrix flux potential formulation (Int) requires additional
computations for numerical integration of (26¢) when using
conductivity models such as (25). Hence, in the analysis
below we will evaluate K, exclusively using the arithmetic
averaging method given by (26¢).

The possibility of achieving better results using more
nonlinear expressions for I',, was studied next. For this
purpose we introduced an exponent, p, into (22) to obtain

Fw = aw[hf_ hm(’):lp (30)

Figure 3 presents calculated cumulative infiltration and
water transfer rates for the medium-textured soil type, again
in terms of the original variable (Figure 3a) and the scaled
variable (Figure 3b). The results in Figure 3a show a
considerable effect of p on the transfer rates. However, the
influence of p on the scaled curves in Figure 35 is relatively
small. Anincrease in p resulted in a slightly better fit at early
times (r* < 1) but gave worse results at later times (¢* > 2).
Similar effects were also found for the coarse- and fine-
textured soils (results not shown here). We also noticed that
for all three soil types, larger values of p required increas-

TABLE 2. Horizontal Infiltration Data and Scaling Coefficients
7w for Different Methods of Evaluating K, (f1,,,; = —1000 cm)
Y
1(=), 1 s,
Texture m3/m® 107* days Mat Fra Ari Geo Int
Coarse 0.3390 8.46 3162, 0.29 0.58 11.11 .29
Medium  0.1425 1.63 10.39 0.22 0.43 145 1.17
Fine 0.0237 0.27 3.02 0.20 037 077 1.18
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versus time 7 for a medium-textured soil in terms of (a) absolute and (b) scaled values, as calculated with different

values of p using an arithmetic-averaged K, (Ari).

ingly smaller values for the scaling coefficient, v,,, to match
the reference curves at 1* = | (see also Table 3).

The results above were obtained with an initial pressure
head 4, ; of — 1000 cm in the matrix blocks. We investigated
the effect of 4, ; on the calculations by varying the initial
conditions from —30 to ~15,000 cm. Figure 4 gives one set of
scaled curves for the medium-textured soil using p = 1.0,
a = 1 cm, and B = 3 (the other soils again gave very similar
results). The corresponding scaling coefficients are listed in
Table 3. Notice that the shapes of the scaled water transfer
rate curves (Figure 4a) are reasonably similar to those of the
reference results (Figure 4b), especially for the lower values
of h,, ;. The scaled cumulative horizontal infiitration curves
(Figure 4b) match each other nearly exactly, irrespective of

the initial condition, until approximately t* = 2.0. For larger
times (¢* = >2), the scaled infiltration increases slightly
when 1, ; decreases.

From Figures 3 and 4, as well as from many other
calculations not further shown here, we found that in terms
of the scaled variables, the first-order term with p = 1.0
always underestimated infiltration as calculated with the
complete numerical solution at relatively early times (i.e.,
for r* < 0.5). The two methods procduced similar curves
when 0.5 < r* < 2.0, while the first-order solution over-
predicted infiltration by up to 10-20% when t* > 2.0. Also,
the scaling coefficient vy, was found o depend relatively
more on the initial pressure head gradient between the two
pore systems than on soil type. Table 3 shows that the

TABLE 3. Horizontal Infiltration Data and Scaling Coefficients v, for Different Initial Conditions
h, i and Values of p
’yH/
B (), 1.5,
cm m3/m? 107%days  p=10 p=125 p=150 p=175 p =200
Coarse
-30 0.0100 0.56 1.29 0.571 0.252 0.111 0.0491
—-100 0.1191 3.33 1.23 0.410 0.136 0.0453 0.0150
—330 0.2933 7.49 0.73 0.202 0.056 0.0157 0.0044
—1,000 0.3390 8.46 0.58 0.154 0.041 0.0109 0.00297
—3,000 0.3479 8.87 0.54 NC NC NC NC
Medium
—30 0.0015 0.10 1.13 0.512 0.231 0.104 0.0467
—100 0.0095 0.26 1.05 0.352 0.117 0.0391 0.0131
—330 0.0504 0.72 0.79 0.198 0.049 0.0125 0.00313
-1,000 0.1425 1.63 0.43 0.085 0.017 0.0034 0.00067
-3,000 0.2330 2.47 0.23 0.039 0.007 0.0013 0.00019
—15,000 0.3046 3.15 0.12 NC NC NC NC
Fine
=30 0.0004 0.04 1.32 0.403 0.184 0.084 0.039
—100 0.0016 0.07 0.76 0.255 0.086 0.029 0.0099
—330 0.0069 0.14 0.58 0.145 0.037 0.009 0.0024
—1,000 0.0237 0.27 0.37 0.070 0.014 0.0026 0.0005t
—3,000 0.0622 0.53 0.19 0.029 0.004 0.0007 0.00009
—15.000 0.1418 1.08 0.06 NC NC NC NC

NC indicates no convergence in the numerical solution of the flow equation.
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dependency of vy, on A, ; increased considerably with
increasing p values. This dependency of ¥, on the initial
condition, especially for larger p values, could in principle
be taken into account by making v, in (3) or (30) a function
of h,, ;. This approach is not followed here since (1) prelim-
inary results indicated only minor improvements in the
dual-porosity simulations, even for relatively large differ-
ences in vy, -values such as those shown in Table 3, (2) the
functional form v,,(4,, ;) would depend also on soil type and
the value of p, and (3) additional parameters would be
introduced, thus limiting the general character of our formu-
lation. Instead, we prefer to use a constant vy, value,
independent of the initial condition and the type of soil
involved. Based on the data in Table 3, and further validated
below by a series of two-dimensional simulations, we se-
lected a value of 0.4 for vy,, and assumed p = 1.0.

Comparisons With Two-Dimensional Calculations

The first-order transfer term (2) using coefficient (3) with
B = 3 will now be evaluated in terms of the complete
one-dimensional numerical dual-porosity formulation given
by (1) through (3). The applicability of the proposed coupling
term with different values of the scaling coefficient, vy,,, will
be tested by comparing simulation results with those gener-
ated using an equivalent two-dimensional variably saturated
flow model. Equations (1), (2), and (3), subject to appropri-
ate initial and boundary conditions, were solved using the
numerical model of Gerke and van Genuchten [1993]. This
model solves the coupled system of equations using a
mass-lumped Galerkin finite element scheme. For the two-
dimensional reference simulations we used the SWMII
model of Vogel [1987]. SWMII solves the two-dimensional
flow equation using the Galerkin method assuming triangular
finite elements. The rectangular slab-type geometry of the
porous matrix was imitated by dividing the medium into two
vertical layers representing the matrix and fracture pore
systems, respectively. Only the half widths of the fracture b
and the matrix « pore systems were considered because of
symmetry. As shown in Figure S, the finite element grid was
compressed at the boundary between the two regions to

enable relatively accurate simulations of the flow process at
and across the fracture/matrix interface. Results were ob-
tained using a total of 6800 elements and a self-adapting
time-stepping algorithm with an initial time step At of usually
1076 days. Most two-dimensional model calculations dis-
cussed below used about 70 hours on a IBM compatible AT
486 type, 33-Mhz personal computer to simulate an infiltra-
tion period of 0.08 days. By comparisorn, the dual-porosity
model required 2040 min to run the different examples.
We considered two scenarios. In the first scenario we
neglected vertical flow in the matrix pore system, thus
creating a mobile-immobile type system in which water
transfer and lateral flow across the fracture/matrix interface
can be precisely compared. This case expands upon the
previous horizontal infiltration example by allowing the
boundary pressure head in the fracture pore system to

Fracture
4 .
%]H Matrix Ma—&i
X=0 005 0. 1.05¢m
0- L A—

o.l-

ol \h\

Fig. 5.

Depth, z (cm)

\

Finite clement grid used in the two-dimensional reference
simulations.
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Fig. 6. Pressure head distribution A,(x, z, 1) at 1 = 0.08 days obtained with the two-dimensional model, for (a)
relatively low (K , = 0.01 cm/d) and (b) relatively high (K., = 0.1 cm/d) water transfer rates.

become time-dependent. The second scenario considers the
complete two-dimensional description invelving horizontal
and vertical flow in both pore systems. The matrix hydraulic
conductivity in the two-dimensional model was simulated by
employing anisotropy factors of K, = K, ,/[(1 — wpK ]
for the horizontal direction, and factors of K,, = 0.0 (first
scenario) and K., = K, (second scenario) for the vertical
direction. (K, ,, is the saturated hydraulic conductivity of
the matrix pore system.)

The calculations below pertain to a dual-porosity type
structured medium involving a medium- to fine-textured
matrix and a coarse-textured fracture pore system with
hydraulic parameters as listed in Table 1. We again consider
a matrix block size of 2 cm (¢ = 1 ¢m), and assume that the
fracture system makes up 5% of the bulk soil (wp = 0.05),
which gives a fracture half width # of 0.05263 cm. We further
assume that the soil surface of the matrix is sealed and that
water infiltrates at a (local) rate g¢ of 1000 cm/d exclusively
into the fracture pore system of a 40-cm-deep dual-porosity
medium having an initially uniform pressure head of hyp =
hy,,; = —1000 cm. Hence the infiltration rate for the bulk soil
as a whole ¢, equals 50 cm/d.

Figure 6 shows calculated two-dimensional pressure head
distributions at + = 0.08 days for scenario one assuming
situations with relatively low (K , = 0.01 cm/d; see Figure
6a) and high (K, , = 0.1 cm/d; see Figure 6) water transfer
rates between the fracture and matrix pore regions. Notice
that the horizontal axis is enlarged 40 times. The example in
Figure 6a represents a case of significant preferential flow
where an infiltration front moves through the 40-cm soil
profile in nearly 2 hours. Figure 6a shows considerable
lateral pressure head nonequilibrium between the fracture
and the matrix, as well as significant variations within the
matrix pore region itself. The example in Figure 64, on the
other hand, illustrates the case where equilibrium between
the two regions is essentially reached within 10 ¢cm from the

moisture front. We will use the calculations in Figure 6 as
our reference results.

To effectively compare simulation results of the one-
dimensional dual-porosity and two-dimensional single-
porosity models, local water contents in the two-dimensional
mode]l were averaged over each horizontal line of nodes
according to

1 Ny 1 Ny
9f= — z Opw; 0, =— E Omiwv; (3D

Wf,':l Wm =1
where @f(z) and 8,,(z) are the depth-dependent average
volumetric water contents of the fracture and matrix pore
regions, respectively; N is the number of nodes; 6, is the
nodal volumetric water content in the x direction; W is the
width of the fracture or matrix pore system; and w is the
width associated with each node i. The average water
contents were subsequently used to calculate the rates of
horizontal infiltration into the matrix pore region as a fiinc-
tion of depth, equivalent to the water transfer rate I, of the
dual-porosity model, and to compute average pressure head
values in the fracture and matrix pore systems by using the
inverse of the retention function.

Figures 7 and 8 compare simulation results obtained with
the two-dimensional single-porosity and onc-dimensional
dual-porosity models using ditferent values of y,. and p for
the first scenario (no vertical flow in the matrix) and the
lower water transfer rate (K, , = 0.01 cm/d) at r = 0.08 days
(1:55 hours). The location of the moisture front in the
fracture pore system was found to be a very sensitive
indicator of the relative accuracy of the one-dimensional
dual-porosity model, including the adopted transfer term.
The sensitivity was particularly high in our example because
of the relatively small water capacity of the fracture pore
system. A small capacity permits small differences in the
water transfer rates to produce relatively large variations in
the vertical water flow rate.

Figure 7 indicates that the dual-porosity model yields
unacceptable results when the first-order term is used with-
out scaling (p = 1.0, y,, = 1.0). The infiltration front was
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more than 11 c¢m behind the two-dimensional reference
simulation. Also, the water transfer rates (Figure 75) and the
volumetric water contents (Figure 7¢) were distributed quite
differently over the profile as compared to the two-

dimensional reference results. Using p
scaling coefficient of 0.4 for v, led to a much better
agreement with the two-dimensional results for both the
pressure head (Figure 7a) and the water content (Figure 7¢);
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calculated with the dual-porosity and two-dimensional models using
different scaling coefficients y,. and p values (first scenario; K , =
0.01 cv/d).

however, the water transfer rates (Figure 7b) near the
moisture front were still greatly underestimated. As shown
in Figure 8, the agreement with the reference calculations
could be improved somewhat by using a more nonlinear
formulation assuming p = 1.5 and y,, = 0.02. The match was
slightly better when using p = 1.75 and v, = 0.004; still, the
calculated water transfer rate near the moisture front re-
mained too low.

Figure 9 shows a plot versus time of the depth-integrated
water transfer rate, I',, = [{TI',, dz (where [ is the depth of
the profile being considered), as a fraction of the infiltration
rate g, at the soil surface. The ratio T',, /g, reflects the
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relative accuracy of the different formulations for I',, during
the simulation period. The case without scaling {curve 1)
resulted in a water transfer/infiltration ratio which soon
exceeded that of the reference simulation. The ratio gy
obtained with the dual-porosity mode] using p = 1.0 and
Yw = 0.4 was initially too low but later, starting at about
0.01 days, seemed to match the reference curve the best.
Using more nonlinear expressions (curves 3 and 4 in Figure
9) gave better agreements with the two-dimensional results
only until 0.01-0.02 days.

The results in Figures 7, 8, and 9 are best explained by
considering the temporal and spatial variations in the water
transfer rates. As compared to the reference simulations, the
dual-porosity model underestimates water transfer rates at
and near the moisture front but later overpredicts the rates at
shallower depths (compare Figures 75 and 8b). Hence the
infiltration front calculated with the dual-porosity model
using p = 1.0 and v,, = 0.4 moves initially faster downward
as compared to the reference simulation since less water is
being transferred into the matrix pore system near the toe of
the moisture front. After about 0.02 days, the integrated
water transfer rates of the dual-porosity model becomes
nearly equal to those of the reference simulation (Figure 9).
Because now relatively more water is being removed from
the fracture pore system in the upper part of the soil profile
(Figure 7b), the vertical flow rates in the fractures at larger
depths slowly start to decrease.

We also made several comparisons between the one-
dimensional dual-porosity model and the two-dimensional
model for the second scenario involving both horizontal and
vertical water flow in the matrix pore system. The resulis
shown in Figure 10 for the lower transfer rate (K, , =0.01
cm/d) were found to be very similar to those in Figure 7 for
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of the bulk soil volume: the dotted line in Figure 10c¢ indicates the initial water content.
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scenario one without vertical flow. The similarity is a con-
sequence of the relatively low vertical hydraulic conductiv-
ities, and hence flow rates, in the matrix pore system for the
prevailing pressure heads. Thus small changes in the already
low flow rates did not significantly affect the water transfer
rates. We noticed that scenario two (Figure 10) at ¢+ = 0.08
days caused the infiltration front to become slightly deeper
and the maximum water transfer rate to become somewhat
lower as compared to scenario one (Figure 7). The dual-
porosity results using p = 1.0 and vy, = 0.4 matched the
pressure head (Figure 10a) and water content (Figure 10¢)
profiles of the reference model well in both pore systems at
t = 0.04 days; deviations between the two models were
slightly larger at # = 0.08 days. .

For higher water transfer rates (K, , = 0.1 cm/d), the
agreement between the one- and two-dimensional formula-
tions was generally found to be much closer than those for
the lower transfer rates. Results for one set of calculations
for the second scenario with p = 1.0 and y,, = 0.4 are shown
in Figure 11. Transfer rates in this case were so large that the
pressure heads in the two pore systems approached equilib-
rium within approximately 10 ¢cm from the infiltration front
(see also Figure 6b). Notice that the transfer rate profiles
calculated with the two-dimensional mode! (Figure [1b)
exhibit a relatively small second peak approximately 4 cm
above the moisture front. This interesting feature was found
only in calculations for the second scenario assuming rela-
tively high water transfer rates. The second peak in I',
developed at depths where lateral pressure head nonequilib-
rium inside the matrix still existed and where vertical flow in
the wetted matrix region close to the fracture boundary had
accelerated. The presence of two peaks in [',, was found to
depenc strongly on the shape of the hydraulic functions in

the particular pressure head range. Notwithstanding the
second peak, the average pressiire head (Figure 1la) and
water content (Figure 11c¢) profiles obtained with the two
models matched each other very closely in both pore sys-
tems.

Finally, we noticed that the more nonlinear formulations
caused the scaling coefficient to become increasingly depen-
dent on the pressure head gradient at the fracture/mairix
boundary, to the point that for large gradients the dual-
porosity scheme became numerically unstable. In particular,
for K , = 0.1 cm/d, the higher exponent (p = 1.75) gave
unacceptable results at early times, while all nonlinear cases
yielded poor results also at later times. Considering the
results of all calculations carried out in this study, we
conclude that a transfer term with p = 1.0 and v, = 0.4
performed best.

Discussion AND CONCLUSIONS

An important characteristic of dual-porosity models is the
coupling term I',, governing the exchange of water between
the fracture and matrix pore systems. This term may be
modeled, macroscopically, by means of a first-order rate
equation which assumes that water transfer is proportional
to the difference between the average pressure heads of two
pore systems. Because of its simplicity, ', can simulate the
complex three-dimensional local flow process at and across
the fracture/matrix interface only in a very approximate
manner. Hence, some errors in the cual-porosity model
should be expected.

The potential errors involved were studied by comparing
dual-porosity model calculations directly with those ob-
tained with equivalent one- and two-dimensional single-
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porosity numerical flow models. The test cases involved
transient preferential flow in variably saturated structured
soil. The two-dimensional model revealed the development
of highly nonuniform flow fields inside the matrix pore
system along the fracture/matrix interface (see also Figure
6a). This was especially true for scenario 2 when relatively
large matrix blocks were used. These nonuniform flow fields,
of course, cannot be simulated with a one-dimensional
dual-porosity model.

This study indicates accurate results for matrix block
geometries in the form of parallel rectangular slabs when the
dual-porosity model uses a simple arithmetic average of the
matrix hydraulic conductivities evaluated at the matrix and
fracture pressure heads, together with a single, constant
scaling coefficient, v,,, of 0.4 in equation (3). While improv-
ing the results in a few cases, more nonlinear terms caused
an increased dependency of the scaling coefficient on the
pressure head gradient between the two pore systems.

The relatively simple first-order water transfer term used
in this study contains parameters that can be related explic-
itly to physical properties of the medium, such as the
geometry and size of the matrix blocks or soil aggregates,
and the hydraulic conductivity K, of the matrix at the
fracture/matrix boundary. Having an explicit dependency of
I', on K, in the flow model is crucial when trying to quantify
the potentially very important effects of fracture coatings or
other physical and chemical conditions or processes (includ-
ing weathering) on water flow rates in structured media.
Thoma et al. [1992] showed that the presence of a mineral-
ized layer or coating at the fracture/matrix interface can
significantly reduce the uptake of water into the rock matrix.
We showed preferential flow simulation results using a
reduction of 0.01 in K, as compared to K,, (Figure 10);
Thoma et al. found even larger reductions.

Still needed is an extension of the transient dual-porosity
flow/transport model to other geometries, as well as to
systems having a mixture of aggregates of different shapes
and sizes, e.g., using methods as suggested by Rappoldt
[1990]. This problem is currently being investigated. How-
ever, and alternatively, one could also treat the dual-
porosity model in a more pragmatic manner by considering
the geometry coefficient 8 or better perhaps the entire term
Bv,./a® in (3), as an essentially empirical quantity which
must be calibrated to observed field data. Overall, however,
we believe that the accuracy of the proposed first-order term
may be sufficient for most practical applications when con-
sidering the large number of uncertainties involved in mod-
eling and measuring preferential flow processes in heteroge-
neous, structured media. As such, we believe that the
dual-porosity model will be helpful for studying field-scale
solute transport problems.
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