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Solute transport in the subsurface is often considered to be a nonequilibrium process. Predictive
models for nonequilibrium transport may be based either on chemical considerations by assuming the
presence of a Kinetic sorption process, or on physical considerations by assuming two-region
(dual-porosity) type formulations which partition the liquid phase into mobile and immobile regions.
For certain simplifying conditions, including steady state flow and linear sorption, the chemical and
physical nonequilibrium transport models can be cast in the same dimensionless form. This paper
presents a comprehensive set of analytical solutions for one-dimensional nonequilibrium solute
transport through semi-infinite soil systems. The models involve the one-site, two-site, and two-region
transport models, and include provisions for first-order decay and zero-order production. General
solutions are derived for the volume-averaged (or resident) solute concentration using Laplace
transforms assuming both first- and third-type inlet conditions, and arbitrary initial conditions, input
solute concentrations, and solute production profiles. The solutions extend and generalize existing
solutions for equilibrium and nonequilibrium solute transport. The general solutions are evaluated for
some commonly used input and initial conditions, and zero-order production profiles. Expressions for
the flux-averaged concentration are derived from the general and specific solutions assuming a
third-type inlet condition. Typical examples of calculated concentration distributions resulting from
several sets of initial and input conditions and zero-order production functions are also presented and

briefly discussed.

INTRODUCTION

Solute transport in soil and groundwater systems is gov-
erned by a large number of complicated and often interactive
physical, chemical, and microbiological processes. Attempts
have been made to account for a number of these processes
by developing transport models which consider the simulta-
neous effects of hydrodynamic dispersion, molecular diffu-
sion, convective transport, sorption, zero-order production,
and first-order decay [Jury et al., 1991]. A special set of
models results when nonequilibrium occurs during the trans-
port process, presumably caused by the presence of different
types of sorption sites or flow regions in the medium
[Nielsen et al., 1986]. Nonequilibrium transport models may
be conveniently grouped into chemical nonequilibrium mod-
els which presume that chemical-kinetic processes are caus-
ing the nonequilibrium situation, and physical nonequilib-
rium models which assume that nonequilibrium results from
a heterogeneous flow regime. Chemical nonequilibrium mod-
els include the familiar one-site and two-site sorption models
which consider sorption on some (or none) of the sorption
sites to be an instantaneous (equilibrium) process, while
sorption on the remaining sites is thought to be governed by
first-order kinetics [Selim et al., 1976; Cameron and Klute,
1977]. In contrast, physical nonequilibrium is often modeled
by using a two-region (dual-porosity) type formulation which
partitions the medium into distinct mobile (flowing) and
immobile (stagnant) liquid regions [Coats and Smith, 1964,
van Genuchten and Wierenga, 1976). In this case, solute
exchange between the two liquid regions is considered to be
a first-order mass transfer process.

Although based on different concepts, the chemical and
physical nonequilibrium transport models can be put into the
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same dimensionless form if certain simplifying assumptions
are satisfied, such as having a linear sorption process, steady
state water flow, and a spatially uniform soil profile [ Nkedi-
Kizza et al., 1984; van Genuchten and Wagenet, 1989].
These conditions, which imply that the pore water velocity,
the soil water content, the dispersion coefficient, and the soil
bulk density are constant in time and space, are also needed
in order to derive analytical solutions. This situation is in
contrast to most field conditions where the flow and trans-
port regimes may be highly variable because of transient
flow induced by time-dependent boundary conditions, or
because of spatial and temporal variability in the hydraulic
and solute transport properties. Hence the applicability of
analytical solutions is limited as compared to more flexible
numerical solutions. Still, analytical solutions are useful for
providing rapid initial estimates of alternative pollution or
remediation scenarios, especially when implemented over
large spatial and temporal scales, and for validating numer-
ical models. Analytical solutions often also provide more
insight into the underlying physicochemical processes than
do numerical solutions and are helpful for sensitivity analy-
ses to investigate the effects of various transport parameters.
Additionally, analytical solutions can be incorporated more
easily in stochastic approaches for describing solute trans-
port in heterogeneous soils [e.g., Dagan and Bresler, 1979;
Destouni and Cvetkovic, 1991].

A large number of analytical solutions for one-dimensional
nonequilibrium transport currently exists, mostly for specific
models subject to unique initial and boundary conditions.
Lindstrom and colleagues [Lindstrom and Narasimhan,
1973; Lindstrom and Stone, 1974] were the first to derive
general solutions of the one-site nonequilibrium transport
model for arbitrary initial and/or boundary conditions, but
without considering first-order degradation and zero-order
production. Lindstrom [1976] later extended the solutions to
first-order decay for pulse-type solute input conditions as-
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suming an initially solute-free profile. Analytical solutions of
the two-region nonequilibrium transport model, assuming
pulse-type solute input conditions, were derived by van
Genuchten and Wierenga [1976]. Their solutions were later
generalized by De Smedt and Wierenga [1979]. Lassey
[1988] and van Genuchten and Wagenet [1989] subsequently
derived solutions for the two-site/two-region models with
first-order decay, but without considering zero-order pro-
duction and restricting the solutions to a zero initial concen-
tration distribution. Lassey [1988] extended the solutions to
general expressions of the flux-averaged concentration for
the boundary value problem. Analytical expressions of the
flux-averaged concentration for the initial value and produc-
tion value problems have thus far not been derived.

The objective of this study was to derive a comprehensive
set of solutions for one-dimensional nonequilibrium solute
transport with first-order decay and zero-order production in
a semi-infinite soil system. We start with a brief outline of
the one-site and two-site chemical nonequilibrium models,
as well as the two-region (mobile-immobile) physical non-
equilibrium model. General solutions for the dimensionless
transport equations are subsequently derived using both
first- and third-type inlet boundary conditions, and assuming
arbitrary input concentrations, initial conditions, and pro-
duction functions. The general solutions are evaluated for
specific and commonly used input concentrations, initial
conditions, and zero-order production profiles. We also
present expressions for the flux-averaged concentration as
derived from the general and specific solutions for the
volume-averaged concentration based on a third-type inlet
condition using the well known relationship between the
flux- and volume-averaged (or resident) concentrations
[Kreft and Zuber, 1978; Parker and van Genuchten, 19844a].
The solutions for equilibrium transport are shown to be
special cases of the nonequilibrium solutions. The effects of
selected transport parameters on predicted solute distribu-
tions are also demonstrated.

MODEL

Two-Site Nonequilibrium Transport Model

The two-site sorption model makes a distinction between
type-1 (equilibrium) and type-2 (first-order kinetic) sorption
sites [van Genuchten and Wagenet, 1989)]. For steady state
flow in a homogeneous soil and assuming a linear sorption
process, the two-site solute transport model is given by

fpk\ ac 8% dc ap
l+—|—=D—-v——-— — ke — s,
( 9 o Dot Vo kel

y sy(-
0’°+w<x)+f———”é LA

as
a—f= al(1 = foke = sid = poasi + (L= flyouln) Q)

where c is the volume-averaged concentration of the liquid
phase (ML ™%); s is the concentration of the sorbed phase
(MM ™Y); D is the dispersion coefficient (L2T~'); 6 is the
volumetric water content (L*L~3); v = ¢/6 is the average
pore water velocity (LT™!) in which g is the volumetric
water flux density (LT ~!); p is the bulk density (ML ~3); g,
and w, are first-order decay coefficients for degradation in
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the liquid and sorbed phases, respectively (T7'); ¥,
(ML73T7'y and y,(MM ~'T™") are zero-order production
terms for the liquid and sorbed phases, respectively; & is a
distribution coefficient for linear sorption (M ~'L3); a is a
first-order kinetic rate coefficient (I ~'); f is the fraction of
exchange sites assumed to be at equilibrium; x is distance
(L); ¢t is time (7); and the subscripts ¢ and & refer to
equilibrium and kinetic sorption sites, respectively. Equa-
tions (1) and (2) implement the customary first-order rate
expression to describe Kinetic sorption on the type-2 sites.
Note that if f = 0, the two-site sorption model reduces to the
one-site fully kinetic sorption model, i.e., when only type-2
kinetic sites are present.

If we employ the dimensionless parameters listed in Table
1, (1) and (2) reduce to

aC, 1 3%*C, ac,
T pazz ez QTG TmGr@
(3)
aC» )
(1-B)R —a'T—=w(C|_C2)—MzC2+Yz(Z) (4)

where C is the reduced volume-averaged solute concentra-
tion, C; is the reduced kinetically adsorbed concentration, w
is a first-order decay coefficient, vy is a zero-order production
coefficient, Z and T are space and time variables, respec-
tively, B, R, P, and w are adjustable model parameters, and
the subscripts 1 and 2 on x and vy refer to equilibrium and
nonequilibrium sites, respectively. Table 1 gives definitions
of the various dimensionless parameters in terms of the
original dimensional coefficients. We shall assume that w and
w1 cannot be negative. Notice that the zero-order production
terms in (3) and (4) are functions of position Z, but that the
first-order rate coefficients are assumed to be constant.

Two-Region Nonequilibrium Transport Model

The two-region transport model assumes that the liquid
phase can be partitioned into mobile (flowing) and immobile
(stagnant) regions, and that solute exchange between the two
liquid regions can be modeled as a first-order process. Using
the same notation as before, and again assuming steady state
water flow in a homogeneous medium, the two-region solute
transport model is given by [see also van Genuchten and
Wagenet, 1989]

.2
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_f)PkP's,im]Cim + Gim'YI.im(x) + (l _f)p')'s,im(x) (6)

where the subscripts m and im refer to the mobile and
immobile liquid regions, respectively, the subscripts / and s
refer to the liquid and sorbed phases, respectively, f repre-
sents the fraction of sorption sites that equilibrates with the



TORIDE ET AL.: SOLUTIONS FOR NONEQUILIBRIUM SOLUTE TRANSPORT

2169

TABLE 1. Dimensionless Parameters for the Two-Site and Two-Region Transport Models
Parameter Two-Site Model Two-Region Model
T vt/L vt/L
VA x/L x/L
P vLID v, LID,,
B (6 + fpk)/(8 + pk) (B + fph)/(8 + pk)
R 1 + pk/6 1 + pk/@
a(l — B)RL al
w - 7 -
v fv
C,y cleg cmlCo
c i /
—_ CimlC
’ (1= ke ’
u (Op+ fpkps )L (Ot 1. m + fokpt s )L
| T Amrner
v 6y
“ ( _f)PkI-‘-x,kL (eimpl.im + (1 _f)PkP's.l'm)L
2 R il
v fv
L(O‘YI +fp7:,e) L(Bm‘)’I.m +fP‘Y:<m)
Y1 e — R —
frvcy fvcy
L(l _ﬂp Ysk L(oim71.im + (I —f)p 7Svim)
Y2 T —
Ovcy Gveg

Here, ¢ and L represent characteristic concentrations and lengths, respectively.

mobile liquid phase, and « is a first-order mass transfer
coefficient (T~') governing the rate of solute exchange
between the mobile and immobile liquid regions. Note that 6
is equal to @, + 9,,,.

It is convenient to also write (5) and (6) in dimensionless
form using the parameters listed in Table 1. It can be shown
that the resulting dimensionless transport equations are
identical to (3) and (4) [see also Nkedi-Kizza et al., 1984].
Hence the subscripts 1 and 2 in (3) and (4) refer to mobile and
immobile regions if the dimensionless transport equations
are interpreted in terms of the two-region model.

Analytical Solutions

The dimensionless transport equations given by (3) and (4)
will be solved for the following general initial and boundary
conditions:

Ci(Z,0) = Cy(Z, 0) = C(2Z)

8 aC, c)
Poaz C

/

)]

= Cy(T)
zZ=0

(3)

with & = 0 for a first-type and & = 1 for a third-type boundary
condition, and

ac,

—(», T) =
az(w )=0

9)
where C; is the initial concentration, and Cy is the input
concentration. Because the governing equations and the
initial and boundary conditions are linear in C, the principle
of superposition [e.g., Farlow, 1982] may be used to express
the general solutions into the sum of three independent
solutions involving a boundary value problem, an initial
value problem, and a production value problem:

cz, n=ckz, n+cliz, n+cfiz, n 10

C)z, TY=c¥z, n+chz, n+chz n an

where the superscripts B, I, and P denote the boundary,
initial, and production value problems, respectively. Each
problem was solved using the method of Laplace transforms
with respect to T and Z. The solution process is outlined in
the appendix. We first present a general solution, and
subsequently show several specific solutions for each prob-
lem. The separate expressions for CE, ¢!, and C¥ given
below may be simply added to yield the complete analytical
solution for a particular set of input concentrations, initial
conditions, and production functions.

BoOUNDARY VALUE PROBLEM

General Solution

The following general solution of the boundary value
problem was obtained:

ckz, n= IT CoT— 7 fZ, 7) dr (12)
0
B __ @ [T,.8
Cy(Z, T a _B)RJ; ci(Z, 7)
(@ + p T — 1)
* X _W dr (13)

where

2 TV =T(Z. T il
2, )=T|Z, T) exp _EE

@ T T I/ZF
+EJ:J m)‘(r_—f_) I(Z, T)Hl(T’ 7) dr

(14)
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0T (w+ p)(T-1)

BR (1 = B)R

20 ((T— 1)\
R \(B(1 - B)

in which I and I, denote modified Bessel functions of order
zero and one, respectively, and I'|(Z, 7} is as given in Table
2. We give here specific solutions assuming Dirac delta and

multiple pulse input functions for the input concentration,
Co(T) in (8).

H{(T, 7) = exp

e i=0.1  (15)

Specific Solutions

Dirac delta input function. The inlet condition for a
Dirac delta function is given by

Co(T) = 8(T) (16)

Substitution of (16) into the general solution leads to the
following solution:

ciz, =z, 1 (17)
CAZ. T) = —= TPz DH(T. ) d 18
+€Z, )—(I_E)RL WZ, TYHW(T, 1) dr (18)

where fiZ, T) and Hy(Z, 7) are given by (14) and (15),
respectively, and I'\(Z, 1) can be found in Table 2. The
solution for a Dirac deita input is often also referred to as the
travel time probability density function, or the resident time
distribution [e.g., Jury and Roth, 1990].

Multiple pulse input conditions. The input concentration
for a series of successive applications of rectangular solute
pulses may be represented as

Co(T) = f; T<T=T, (T,=0)

Co(T) :f‘Z T: < TS T3
CoD=f T,<T=T;,, (19)

CoD=fy T,=T

where f; (i = 1, 2, -+, n) is constant. For a single
continuous step input function (n = 1), the solution can be
cast in terms of Goldstein’s J function [Goldstein, 1953}
using the same methods as those described in the appendix
for solving the general production value problem. Solutions
of this type were previously presented by Lindstrom and
Stone [1974), De Smedt and Wierenga [1979], and Lassey
[1988], among others. Application of the superposition prin-
ciple to the solution for a single-step input function yields the
following multiple pulse input solution for both the equilib-
rium (k = 1) and nonequilibrium (k = 2) concentrations:

CHZ. TV =D (fi—f, VALZ. T-T) (0)

j=1

i=1,2,+,n k=1,2
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where 1 P(l —u)Z BRZ — ur
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[1-Jb, a) dr (22)  Fora third-type inlet condition with u; + wu,/(w + u,) #
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= — (24b) i
(1-BR [ BRZ+ 1
and where f = 0 in (20). In these equations J(a, b) is - erfe {(4BR1—/P) 12 (9
Goldstein’s J function, and A,(Z, T) is the solution of phase whereas for + N + - ) = 0:
k for a single continuous step input solute distribution [van al _w"" 2w ”’ 27 = =
Genuchten and Wagenet, 1989]. 1 BRZ — ~
Integrating (21) by parts, using the differentiation proper- G(Z, 7= 2 erfc (4BR</P)"?
ties of the J function given by (A31) and (A32) in the - 4
appendix, and some rearranging yields the following alter- P \1? P(BRZ — 1)°
native expression for A, (Z, T) [see also De Smedt and —BR € T 4BRr
Wierenga, 1979]: B BRt
sz l 1 PZ PT
AZ, D=GZ, T)exp | ————— s |1+ + —
iz, 7 (Z, T) exp @+ moBR 2 BR
i P2) erfc | LRE*T a1
- —a-— - ex| C|l——
+R L G(Z, T) exP[ a b] P <€ (4BRT/P)ISZ

We note that when the solutions for a single step input, given

12 by A,(Z, T) and A,(Z, T), are differentiated with respect to

) m Io[2(ab) ] T, one obtains the solutions for the Dirac delta input function

given by (17) and (18), respectively [De Smedt and
Wierenga, 1979].

T 172
+(m) 11[2(ab)”2]] dr  (25)

™ T
ANZ, T) = mj G(Z, 7) exp[—a — b]

INITIAL VALUE PROBLEM

General Solution

0 The general solution of the inital value problem was found
to be
T ©
. [IO[Z(ab)IIZ] Ccl(z, T)=exp (—Z—R) J CdnTy(Z, n, T) dn
0
1- T - 1/2
v (QZAT-7) 1,[2(ab)?}| dT o [T
(l)'f"l.z ﬁ‘l’ +_f HD(T9 T)
BR ),
(26)
where Bt 12
+ | — H (T,
. wh10 ((1 — BT - r)) 7 )
G(Z, 7) =J; TI'i(Z, o) exp [—m do 27) §
f Cin)T(Z, m, 7) dn dr (32)
For a first-type inlet condition, G(Z, 7) is given by 0
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CHZ, T) = CZ) exp [(—

~f CAmTHZ, n, 1) dn dr (33)

0
where [',(Z, 5, 7) is listed in Table 2, and Hy(T, 7) and
H (T, 7) are given by (15). We will present specific solutions
for a stepwise and an exponential initial distribution obtained
by substituting the initial concentration, C;(Z), in (32) and
(33) and by evaluating the integrals with respect to 7.

Specific Solutions

Stepwise initial distribution. A stepwise initial concen-
tration distribution may be written in the form

C,(Z)=U] ZISZ<ZZ (Z]ZO)
Ci(Z)= U2 ZzSZ<Z3

C(Z)y=U; 2, =Z<Z;,, (34)
ci2)=U, Z,=Z

where U; is a constant. When n = 1, (34) represents a
uniform initial concentration. The solution of the initial value
problem assuming initial condition (34) is

T n
clz, 7) = exp (—Z—R) > U= Ui_ )W \(Z, T; Z)
i=1

+ w T
EJ; HyT, 7)

BT 172
i ((1 —BNT - ﬂ) AT, ”)

n

DU~ U (2, 75 Z) dr (35)
i=1
iz, T)=C{2) —_
2.1 { orey
w T ]—[(T
+_..__—_._..
(I—B)RJ;) o7, 7)
((1 —m(r—f))'” )
+ | ——"| H(T, 7)
BT
. Wi-U;_ (2, 73 Z;) dr (36)

i=1
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where Uy = 0, and ¢, is listed in Table 2.
Exponential initial distribution. The initial value problem

was solved for an exponential initial condition of the form
C{Z)=U, + Uy exp (-A'Z) (37

where Uy, U,, and A’ are constants. The specific solutions
for this condition is given by

ciZ, Ty =ex i :
iz, p [U(Z, T; 0)

“BR
T

+ Ua(Z, T3 AD] + —
zll’z ’ ’ BRf

0

,BT 1/2
v ((1 “BINT - ,)) T ”)

(U W(Z, 75 0) + Uspo(Z, 73 A d7

(H()(T, T)

(38)
(@ + uy)T
hz, Ty=cCyz _—_
CZ. T) ( )exp[ 1= B)R
w T
+mjo HO(T, T)
((1 — BUT - r))”z )
+|———— H(T, 1)
BT
U (Z, 75 0) + Usps(Z, 75 AD] dr
39)

where ¢, and s, are listed in Table 2.

ProbucTION VALUE PROBLEM

General Solution

As outlined in detail in the appendix, the following general
solution for arbitrary production profiles y,(Z) and vy;(Z)
can be obtained:

1 T W,T
chiz. n=— i
1z, 1 BRL exp{ (@ + uBR

'fx (71(77) +w :)”272(7}))
0

1 T
I Z,p,T)dydr — — H(T,
AZ,m,7)dndr BRJ; olT, 7)

J(a, b)

x w
f - Yo mLZ, n, 1) dnp d7 (40)
(

+p

) 2

For w + u, > 0, the nonequilibrium concentration is given
by
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y2AZ)

wt+ p,
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|
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w T
+—— | exp|—m——
BR(w + ) J:, { (w0 + na2)BR

{1 = J(b, a)] f (71(7})
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Yz(n))Fz(Z, n, 7) dq dr

+

@+ )

1 (1 (B(T— )\
-— —| H(T, 7)
BRJ; (1~ B)r

© W
f YomTZ, m, 1) dn dr (41)
0 wt s,
whereas for w = u, = 0
v2AD)T
cyz, N=——— 42)
2 ( 1= pR (

where Hy(7T, 7) and H,(T, 7) are again given by (15), I'; is
the same as in the solution of the initial value problem listed
in Table 2, J(a, b) is Goldstein’s J function given by (23),
and a and b are given by (24). As for the initial value
problem, we also selected stepwise and exponential distri-
butions for the production profiles, v,(Z) and y,(Z), and
evaluated the integrals in the general solutions given by (40)
and (41). Specific solutions are presented here only for the
case when @ + u, > 0. The solution of phase 2 for w +
u, = 0is given by (42).

Specific Solutions

Stepwise production profile. A production distribution
consisting of n distinct steps can be expressed as

yi{Z) = ¢, m=Z<mn, (m=0)

v1(Z) = ¢, Ny=Z <1,

v1(Z) ={; M=Z<n;4

7](2) = {n T’nSZ (430)

v2Z) = v, §i1=Z<¢, (£,=0)

YAZ) = v, £2sZ< ¢,

‘)’z(z)=Vj Ei=Z<&

voAZ) = v, En=Z (43b)
where {;, n;, v; and §; are constants (i = 1, 2, -+, n and

j=1,2,-++, m). For single steps in both phases (n = 1 and
m = 1), the production terms are constant throughout the
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soil profile. Inserting (43) into the general solution and
subsequent integration with respect to n leads to

[ onpr ]

n 1 (r
CI(Z, T) = €Xp [*mJJ(d, b)

BR },
. 2 i Li-D¥(Z, 73 ) dr
i=1

WyT

. w r{
BR(w + 11y) fo P @ + n)BR

-J(a, b) — Hy(T, 7)}

D i v (2, 15 € dr (44)
Ji=1

v2AZ)
o+ uy

T
ciz, n= 1 — exp {—Ml

(1 -B)R
(U[LzT
P T + k,)BR

M=, @) D, (L= Lim )(Z, 75 1)

i=1

w T
+—
BR(w + o) f(,

WHAT

¥ L, T P [_(w " uz)BR}[l =16, a)]

1/2
B(T - 7)
—_ (m) H](T, T)}

S = v D(Z, T £) pdr (45)
j=1

where {, = yy = 0, and ¢ is listed in Table 2.
Exponential production prafile. The production terms
can also be expressed in terms of exponential functions:
yI(Z) =+ ¢ exp (—ATZ) (46a)
yAZ) = v) + vy exp (A1 Z) (46b)

where £, &, v, v2, A, and A are constants. The
concentrations of phases 1 and 2 are now given by

1 T WHHT
P = — ——
e BRJ(, exp[ (0 + no)BR

. [(1(11,(2, T, 0) + {lelz(z, T, /\f)] dr

J{a, b)
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WHLT

+ w T
BR(w + 112) J:] P17+ n)BR

'J(a, b) - Ho(T, T)}[V]!JI](Z, TS 0)

|

WHAHT

(o] T
+ exp |——————
BR(w + p3) fo (0 + 12)BR

(1 =J(b, o))l 194(Z, 7 0)

+ 1/2&112(2, 75 AZP)] dr

{ [ (@ + p)T
l —exp|—————

47)

y2(Z)

®+ pia

€z, 1= (1= )R

+ a2, T3 AD)]

(]
ex
w + py P

{1 = J(b, a)]—(

WUpLT
(w+ p2)BR

_+_

B(T - 7)
a-pg)r

12
) H](T, T)
'[l/lllll(z, 75 0)

+ vya(Z, T ,\5’)]} dr (48)

Notice that the solutions of the production value problem
contain several terms which are the same as, or very close
to, those appearing in the solutions of the initial value
problem.

EQUILIBRIUM TRANSPORT

The above general and specific solutions for nonequilib-
rium transport can be readily used to describe equilibrium
transport, subject to the same phase 1 boundary, initial, and
production conditions. Assuming » = 0 and subsequently
setting B8 = 1, the general solution for nonequilibrium trans-
port reduces to the general solution for equilibrium trans-
port:

cz. n=ckz n+clz, n+clz, n

= jT CAT— 1) (Z, 7) dr
0

+f CmTAZ, n, T) dn
0

1 (7 (=
+ = vimTAZ, m, 1) dn dr (49)
R 0 0

where I'| and T'; are the same as before (Table 2). The
equilibrium solutions were verified to be consistent with
those given recently by Lindstrom and Boersma [1989] for a
slightly different (space- and time-dependent) zero-order
production term.
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VOLUME-AVERAGED AND FLUX-AVERAGED CONCENTRATIONS

The transport equations and general solutions above were
formulated in terms of volume-averaged or resident concen-
tration, subject to both first- and third-type inlet boundary
conditions. The initial concentrations and production pro-
files were also assumed to be of the resident type. As shown
previously [e.g. van Genuchten and Parker, 1984; Parker
and van Genuchten, 1984a], a third-type inlet condition is
generally to be preferred for resident concentrations since
this condition ensures that mass balance requirements are
satisfied. Flux-averaged or flowing concentrations are gen-
erally encountered at medium exit boundaries, for example,
when effluent curves are obtained from solute displacement
experiments involving finite columns. The flux-averaged
concentration is defined as the ratio of the solute flux to the
water flux and is related to the resident concentration
through the transformation [Kreft and Zuber, 1978]:

(50)

where the superscript f refers to flux-averaged concentra-
tion, and r to resident concentration (the superscript r was
omitted in the previous section). Substituting solutions for
C’ assuming a third-type inlet condition into (50) leads to
general and specific expressions for ¢/ which are the same
as before, except for some changes in the equations for I' and
yr as shown in Table 2.

The equations in Table 2 indicate that the general solution
of the boundary value problem for the flux-averaged concen-
tration is identical to C" assuming a first-type boundary
condition, i.e., ' (Z, 7) in Table 2 is the same for these two
cases. This result is consistent with previous studies [e.g.,
Parker and van Genuchten, 1984] which have shown that the
transformation of C” to ¢ using (5) yields a mathematically
identical set of equations, except for the inlet boundary
condition which changes from a third-type condition for C*
to a first-type for C/. However, the transformation lcads to
different solutions for the initial value and production value
problems for which the terms I',(Z, 1), ¢;(Z, 71 Z;), and
#>(Z, ; A) in the 7 solution contains additional terms as
compared to C™ for the first-type solution. We will now
shown that these additional terms vanish only when the
initial conditions or production terms are constant versus
distance in the medium, in which case the solution for ¢/
becomes again identical to the solution for C” for a first-type
condition.

Applying transformation (50) to transport equations (3)
and (4) for C”, and the initial and boundary conditions (7), (8)
and (9) assuming a third-type condition (8 = 1), yields the
following transport equation in terms of C/:

f 20/ f
R 2—(;'=%27C2‘~2—C;— w(Cl =) — u,cf + Y2
(51)
ack
(1= BIR — = w(C] - Ch -G+ vz (52
subject to
clz, 0 =clz, 0 =clz (53)
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cf0, T) = C(D) (54)
ot T)=0 55
az (m, )- ( )

where
ci=c; L oCi k=1,2 (56a)
kT kT p ooz v ¢

1 9v;
f— T _

=yf-= =1,2 56b
YeT YT p o7 (56b)
ci=cr Loci (56¢)
=% T p %z ¢

This problem is mathematically identical to the original
transport problem in terms of C" for a first-type inlet
condition. However, notice that the initial conditions C; and
the production functions vy, are affected by the transforma-
tion: the initial flux and resident concentrations in phase 2
are not the same even though there is no convective and
dispersive transport in this phase. The transformed initial
and production profiles in terms of the flux-averaged mode
are identical to the initial and production profiles in terms of
the resident mode only in case of uniform distributions of C/
and v/ versus Z. Hence the transport problem in terms of C”
subject to a first-type inlet condition will therefore not
automatically be equivalent to the problem for C/ subject to
a third-type inlet condition. Flux-averaged concentrations
for nonuniform C; and ¥[ can be derived only according to
(50).

Finally, we note that current measurement techniques are
probably not sophisticated enough to accurately measure
resident concentrations in phases 1 and 2 separately. By
comparison, the total resident concentration C7 defined as

Cr=BRCi+ (1 - B)RC; (57

i.e., the total amount of solute in phases 1 and 2 combined
per unit soil solution at a given point in time and space
[Parker and Valocchi, 1986}, is much more easily measured,
for example, by soil coring or using in-situ geophysical
measurement devices.

ExAMPLES

A computer code similar to the CFITIM and CXTFIT
programs of van Genuchten [1981] and Parker and van
Genuchten [1984b] was written to evaluate the various
nonequilibrium solutions listed in this paper. Rather than
using the Romberg and Gaussian quadrature integration
subroutines of CFITIM and CXTFIT, we employed Gauss-
Chebyshev formula [e.g., Carnahan et al., 1969] to evaluate
the integrals in our solutions. Gauss-Chebyshev quadrature
offers greater flexibility in selecting the number of intgration
points. We obtained accurate results with 50 integration
points for most cases (generally 4 to 5 significant digits,
except for cases when B and Z approach 0 and T becomes
relatively large). The modified Bessel functions of orders
zero and one were evaluated using equations (9.8.1), (9.8.2),
(9.8.3), and (9.8.4) of Abramowitz and Stegun (1970}, while
the J function was evaluated using the approximations for
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Fig. 1. Calculated total resident concentration distributions
CHZ) versus distance Z at T = 2 for four values of B assuming a
third-type inlet condition and a Dirac delta concentration input (P =
4, R=2,w=05 0 = pu, =0).

the modified Bessel function given by van Genuchten [1981].
The equilibrium and nonequilibrium solutions were verified
mathematically by means of a series of comparisons with
existing simpler formulations [Parker and van Genuchten,
19845b; van Genuchten and Wagenet, 1989), as well as with
several numerical solutions. The computer program used to
evaluate the above specific solutions (a modified version of
CXTFIT) is available upon request.

We now briefly discuss typical examples of nonequilib-
rium transport for the boundary value problem (example 1),
the initial value problem (example 2), and the production
value problem (example 3). We emphasize again that these
three solution, or any other combination of solutions involv-
ing a boundary value problem, an initial value problem and a
production value problem, may be combined to obtain more
complicated solutions as described by (10) and (11).

Example 1: Boundary Values Problem
With Dirac Delta Input

Figure 1 gives a plot versus distance of the total resident
concentration C7 given by (57) for a third-type Dirac delta
inlet condition. Results are for T = 2.0, P =4, R =2, 0w =
0.5, uy = u; = 0 (no degradation), and three values of the
dimensionless coefficient 8. The parameter 8 accounts for
the relative partitioning of the medium into phases 1 and 2.
When B increases, more solute transport occurs in phase 1
which constitutes the equilibrium part of the transport sys-
tem, with the limiting case of equilibrium transport occurring
when 8 = 1. As expected, the solute profile becomes more
symmetrical and has a higher peak concentration when 8
increases to 1.

Example 2: Initial Value Problem
With Stepwise Initial Distribution

Figure 2 gives phase 1 equilibrium (C;) and phase 2
nonequilibrium (C,) resident concentration profiles at 7 =
1.0 for three values of the partitioning coefficient 8 assuming
a third-type inlet condition. The example involves the appli-
cation of a solute-free solution io a soil having a stepwise
initial distribution as shown by the dashed line. The initial
condition is given by (24) with n = 3, (U, U,, Uj) = (0.3,
1, 0.1), and (Z,, Z;, Z3) = (0, 0.5, 1). Other parameter
valuesare P = 10, R =2, w = 1, and u; = u, = 0.2. Figure
2 shows that solutes are leached much more gradually
(dispersed) when g is relatively small, i.e., when the non-
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Fig. 2. Calculated resident equilibrium (C,) and nonequilibrium
(C,) distributions versus distance Z at T = 1 for three values of 8
assuming solute-free input to a soil having a stepwise initial distri-
bution as shown by the dashed line (P = 10, R =2, w = |, p;| =
up; = 0.2),

equilibrium phase 2 dominates relative to the equilibrium
phase 1. Hence the leaching process is not as effective in
terms of completely removing the chemical from the soil
profile when B is small. Notice also that the discontinuity in
the nonequilibrium concentration C, persists much longer
for smaller B values. This is because solute removal and
subsequent leaching from phase 2 can only occur indirectly
through phase 1 after the solute has kinetically desorbed
from phase 2 into phase 1 (the one- or two site sorption
models), or has diffused from immobile water in phase 2 to
mobile water in phase 1 (the two-region model). For larger 8
values the nonequilibrium profiles closely resemble the
equilibrium profile because of increased opportunity for the
relatively small amount of solute in phase 2 to move to phase
1.

Example 3: Production Value Problem
With Stepwise Production

Figure 3 shows equilibrium (C) and nonequilibrium (C,)

277

0.3 T T T T

Cs T=3.0

0.1 4

0.0

L) T
0.0 0.5 1.0 1.5 20 2.5

Fig. 3. Calculated resident concentrations profiles for the equi-
librium (C ) and nonequilibrium (C,) phases at T = 3 for a constant
production term (0 =< Z < 1) in phase 2, no production in phase 1,
a third-type inlet condition and solute-free input to an initially
solute-free soil profile (P = 10, R =3, =05, 0w = 1.0, u, =
Uy = 0).

concentration profiles at T = 3 after application of solute-
free water to an initially solute-free soil profile with a
stepwise production function in phase 2 (equation (435) with
v =02for0=Z <1, v, = 0forZ = 1), but no production
in phase 1. Other parameter values are P = 10, R = 3, 8 =
0.5, w = 1, and u; = p, = 0. Notice the development of a
discontinuity in the phase-2 concentration at Z = 1. As in
example 2, this feature reflects the fact that solutes produced
in phase 2 (or initially present in phase 2) can only be
removed from the profile after being transferred to phase 1.

CONCLUDING REMARKS

We have derived general analytical solutions for nonequi-
librium transport in a one-dimensional semi-infinite soil
system. The governing dimensionless equations for one-site,
two-site, and two-region solute transport include terms
accounting for nonequilibrium adsorption or exchange be-
tween mobile and immobile liquid regions, first-order degra-
dation, and zero-order production. Laplace transform tech-
niques were used to derive general solutions to the
boundary, initial, and production value problems for resi-
dent concentrations using a first- and third-type inlet bound-
ary conditions, and for flux-averaged concentrations. The
solutions extend and generalize existing solutions for equi-
librium and nonequilibrium transport. Specific solutions
included those for Dirac delta and multiple pulse input
functions, stepwise and exponential initial distributions, and
stepwise and exponential zero-order production profiles.
Any combination of these solutions involving the boundary,
initial and production value problems may be implemented
by simply adding the various solutions. The nonequilibrium
solutions can be readily used to describe equilibrium trans-
port by simply setting w = 0and 8 = 1.

The solutions for C/ were found to be different from the
solution for C” using a first-type inlet condition when the
volume-averaged initial and/or production profiles are non-
uniform versus distance. Hence C” needs to be derived from
C' for a third-type inlet condition using transformation (50).
Typical examples of calculated concentration distributions,
resulting from several sets of initial and input conditions and
zero-order production functions were presented and briefly
discussed.

The analytical solutions should be helpful for obtaining
initial or approximate analyses of field scale transport sce-
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narios, for analyzing underlying physico-chemical and bio-
logical transport processes (e.g., in conjunction with labora-
tory soil column displacement experiments), for sensitivity
analyses, and for validating numerical solutions of solute
transport, among other applications.

APPENDIX

The purpose of this appendix is to give details of the

Laplace transform solution of the general nonequilibrium

solute transport problem given by (3) and (4) in the main
text. Taking the Laplace transforms with respect to time of
(3) and (4), subject to the initial and the boundary conditions
given by (7), (8), and (9) yields

——

=C,
P dz 0

Z=90

( 5 dC,
(A3)

:

with 8 = 0 for a first-type and 8 = 1 for a third-type boundary
condition, and

dc, ( (A4
() =
27z ) )
where the overbar denotes a transform function with respect
to time, and s is the corresponding Laplace transform
variable. Solving (A2) for C, gives

-t e oG 7 AS
2 5+b, | " (1-BR (1-PB)Rs (A3)
where
w+ Qs
by = ———— A6)
' (1-B)R (

We restrict the derivation only to nonequilibrium transport
(w > 0). The inverse transformation of (AS) yields the
following relationship for C, in terms of C:

T
CAZ, T) =(1_-wis7€f0 Ci(Z, 1) exp [~by(T = 1)] dr

Y2
M2

+ C;exp (-b,T) + [1 —exp(-67)] (A7)

Substituting (AS5) into (Al) gives

1 d*C, dC, R(sC ” ot wC;

- — - —(w +

pazr “dz PRGC -G FUSTTTS,
aC_' a
141 272 +ﬁ:0 (A8)
s+b, s(s+b) s
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where

wz w

ay= ———— ay; = ——— (A9)

(b= pIK (I = B)K

For brevity, only the solution subject to a third-type inlet

condition (8 = 1) will be discussed. The solution for a

first-type inlet condition (8 = 0) can be derived in a very

similar manner. Taking the Laplace transform of (A8) with
respect to Z and using (A3) leads to the equation

w — -—
_ (BR *— bl>c,- — Cyls)

rZ

5

rC_I(O)

Cir, s) =

_@¥2 Y
s(s+by) s

-1
r— h,(s)] (A10)

where the tilde denotes a transformation with respect to Z in
terms of the corresponding Laplace transform variable r,
and where

aj
s+ b

hi(s)=BRs +w + oy — (A11)

Note that C,(0) is the Laplace transform with respect to
time of the inlet concentration C(0, 7), which for a
third-type boundary condition is an unknown to be deter-
mined later from boundary condition (A4). The denominator
of (A10) can be factored and separated into partial fractions
as follows:

- P
Cir, s) =
ry—ry
rC{0) o \_  _ a2y, ¥
—|8R+ C.—Cy— -
P k s+b) 0 Y ss+bp s
r—=1r
rnC,(0) w \_  _ @y Y
— R+ C,_C_ R —
P (B s+b,)' 0 s(s+by) s
r—r
(A12)
where
P P
5(1—5) ’2=E(l+§)
(A13)

4h|(s) 112
f—(l+ P )

Taking the inverse of (A12) with respect to r using standard
methods {e.g., Abramowitz and Stegun, 1970] leads to

~ raCi(0)  _
C] = ramry exXp (rZZ) P - CO
z w azy2(n)  vi(n)
_ R )
fo (B +5‘—+b,)cl(n)Jrs(s-l-bl) s J
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nCi(0) _
“exp (—ryn) dn} — exp (r Z) T Co
F4 ay.n)  y,(n)
fo (BR+S-F}),)C"(mﬁ—s(s+b|)+ s

(Al4)

- exp (~rym) dn”

Because ¢ < 0, exp (#,Z) in (Al4) vanishes as Z — . Thus
substitution of (A14) into (A4) and solving for C,(0) gives

~ B P(_ 7 w azya(n)
Cl(o)_r2 [C0+jo (BR+s+b1)Ci(n)+m

vi(n)
+

exp (—ram) dn} (A15)

After inserting (A13) and (A15) into (Al4), the general
solution for C, for a third-type input boundary condition
may be written as

PZ(1 — ¢)
2 exp |——
_ 2 _
€= 1+ ¢ Co
x Pin—-2) 1
+fz Ci(n) exp [————2 3
w PE(n - 2)
'(3’””;),) L T R
Z Pin~-2)!1
+ 7 Ciy) exp | ————| =
J; (1) exp 5 :
) R+ w PEZ ) J
A s+ b exp 2 K
x Pin—-2) ¢£-1
+ | ¢ -
L ) exp[ 2 e+
) PEn + 2Z)
'(BIHHb,) eXp T | dn
x(v;(n) azy(n) P(n-2)]1
+ + exp | — -
7 s s(s + by) 2 £
P&l — Z)
* €Xp ———7—‘ d'r]
jz (71(77) ary(n) P(n-2)]1
+ + exp | —————| =
o s s(s + b)) 2 '3
PE(Z — “® 2Y2
- exp —L_U)J dn +J’ (71(77)+ a-v-(n))
2 0 K sls + by)
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o[ P2 e e+ 2]
P 2 &+ P 2 K
(Al16)

This general solution can be divided into three parts: the first
term of the right-hand side is the solution of the boundary
value problem, the next three terms containing C,;(n) pro-
vide the solution of the initial value problem, while the last
three terms containing vy,(7n) and y;(n) constitute the solu-
tion of the production value problem.

Before attempting to invert (A16), we first obtain the
inverse transform of the function

s

F(s) = (A17)

where F(s) and f(s) are the Laplace transforms of F(7) and
AT, respectively, and «; is a constant. The inverse is
obtained with the help of the following general convolution
integral [De Smedt and Wierenga, 1979; Walker, 1987]:

¥ F(s, )] = J'Tf(‘r, T— 7)dr (A18)
0

where #7' denotes the inverse Laplace transform. This
equation states that the iterated Laplace transform of a
function is equal to the Laplace transform of the generalized
convolution integral of that function. Equation (A18) will be
applied to (Al7) by rewriting (A17) into the following form
involving two separate transform variables, s; and s-:

S

F(sy, 5,) = (A19)

The first inversion of A(17) with respect s, follows from the
shifting theorem:

S

Z

I g =l < T,
f.fxl [F(sy, s2)]=—exp . ATy (A20)

The second inversion with respect to s, follows from equa-
tion (29.3.81) of Abramowitz and Stegun [1970]:

F(T\, Ty) = £, £ [F(sy, s3)]
1 kT
=2 - exp ( L

s R e

R BY

by

)f(r,)] = 1o[2(x, T\ T2) "21AT )

(A21)

Application of (A18 ) to (A17) hence leads to the following
inverse transform of F(s):

F(T)= f:lf"[l':(s. )} = fT I[2(k (T — 7)7) I/Z]f(T) dr
4]

(A22)
The following equations may be obtained from (A22) by

applying the shifting theorem [see also Lindstrom and
Narasimhan, 1973]
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Q{CXP (—x,T) J’T Lo[2(x (T = 7)7) 2] fir) d‘f}
0

: ol A23
= + -
S+K2 s 2 S+K2 ( )

and, with some additional manipulations,

Plexp (— 2 - 112
p (—x,T) 3T L[2(x (T — 7)7) "“1f(7) d7

0
K
=fls+ Kk, — (A24)
s + K)o
where k; is a constant.

As an example, we will now briefly outline how the
solution for the production value problem in (A16) can be
obtained. Solutions for the boundary and initial value prob-
lems can be derived in a very similar manner. Separating the
denominator s(s + b,) from the production value terms (the
last three terms) of (A16) and applying (A23) and (A24) to
these three terms yields

ci(z, 7
=ctiz, n+cfHz, 1

P 1/2 "
= (‘W_R) f (71(11)
0

L_° P(n-2)
wtp, v2(n) | exp "T
T b 9 Tl 20 {(T — Ao 172
'foexp(— IT);L ATTE

P 12
chy(Z, o, n) do dr dn — (—)

48R
© @ P(n—-2)
J; P y2(n) exp [——{——bnT}
T] 2w ((T—7)7 mh(Z ) dr d
_L°R pa-p) 7T AT

(A25Y

where

(P/4 +w + 2 [3Rbl)'r

hy(Z, 7, ) = e €xp

BR
{ BRP(n - 2)?
cqexp |—————(————
4T
BRP(n + Z)? }
texp|——F
4T
P 112 P("I +Z)
- |3z exp | —5—
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Bn+Z)+r
(4BR7/P)'"

(A26)

(@ +p = BRbYT
BR

erfc

Next, the first term, C f (Z, T), of (A25) is integrated by
parts with respect to 7, while Fubini’s theorem [Lindstrom
and Stone, 1974)

T [~ T [T
f f“'dad‘r:J’ f cecdrdo (A27)
0 Jo 0 Jo

is used to changed the order of integration. These operations
lead to

1 T WULT
cfz, n=~f exp[ 2K, b)
0

BR (@ + p)BR

£ w
f (‘Yl('fl) + ot p n(n))l"z(Z, n, 7) dn d7
2

0

(A28)

where
J(a, b) = exp (—a — b)I[2(ab)"?] + exp (—a) fb
0

~exp (—A)Ig[2(ar) "1 dr  (A29)
and where a and b were given by (24). Equation (A28) gives
the first term of (40). Equation (A29) may be rearranged into
(23) by using the following property of Goldstein’s J function
[van Genuchten, 1981]

J(a, b) + J(b, @) = 1 + exp (—a — b)I[2(ab)"?] (A30)
Finally, changing the order of integration of C f’ 2z, T
yields the second term of (40).

The corresponding expressions for C ZP (Z, T) can be
readily obtained by substituting (40) into (A7). Before doing
so, the first part of (40), i.e., Cf' given by (A28), is
integrated by parts and further modified using the following
differentiation properties of the J function [van Genuchten,
1981}:

aJ(a, b)

= exp (—a - b)Ig[2(ab)"?]
da

(A31)

aJ(a, b)

a\ 12
_ o le 12
YR exp (—a b)(b) I,[2(ab)"*] (A32)

The above calculations lead to
csNz, 1)

w’T

(0 + u))BR

1
= —— exp

BR

© w
.J-()J;) (Yl(n)+w+u

wp,T .
(w + py)BR

Yz(n))rz(Z, n, 1)dn dr
2
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L rr[rrex [ wpr ] Cap
— ——————exp (~a-
BR2J01J0 p[ u)+uﬁBRJ P

12

—w—)ﬁ I)[2(ab)'?] + L,[2(ab)'?)

.
Nw + 2 B — B)T — 1)

4

’ J’m (71(71) + " :’“ yZ(W))Fz(Z, n, o) dn do-} dr
2

(A33)

Finally, substituting (A33) into (A7), integrating by parts,
and applying Fubini’s theorem (A27) yields the second term
of (41).

NOTATION

a constant defined by (24a).
A; terms defined by (21) and (22), or (25) and (26)
k=1,2).
b constant defined by (245).
volume-averaged concentrations of phase
kk=1,2).
C{ flux-averaged concentrations of phase & defined
by (56a) (k = 1, 2).
volume-averaged initial concentration.
C,f flux-averaged initial concentration defined by
(56c¢).
Cy volume-averaged input concentration.
C7 total resident concentration defined by (57).

Iy, I} modified Bessel function of orders zero and
one.
fi constants for multiple pulse input (i = 1, 2,
<e . n.
AZ, T) travel time probability density function defined
by (14).
G(Z, 7) term defined by (27).
H(T, r) terms defined by (15) (j = 0, 1).
J Goldstein’s J function defined by (23).
P Peclet number (Table 1).
R retardation factor (Table 1).
T time (Table 1).
T; constants for multiple pulse input (i = 1, 2,
<, n).
u term defined by (29).
U; constants for initial concentration (i = 1, 2,

<, n).

Z distance (Table 1).

Z; constants for stepwise initial distribution (i =
1,2,---, n).

B partition coefficient (Table 1).

I'; terms defined by Table 2 (i = 1, 2)

volume-averaged zero-order production

coefficients in phase k (k = 1, 2) (Table 1).

v} flux-averaged zero-order production coefficients
in phase & (k = 1, 2) defined by (56b).

{; constants for production distribution (i = 1, 2,
c,n).
n; constants for stepwise production distribution
(i=1,2,---,n).

Al constant for exponential initial distribution.
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Af constant for exponential production distribution
in phase k (k = 1, 2).

i first-order decay coefficients in phase k (k =
1, 2) (Table 1).

v; constants for production distribution (j = 1, 2,
©, m).
¢ constants for stepwise production distribution
(J=1,2,---,m).

¢; terms defined by Table 2 (i = 1, 2).
w mass transfer coefficient (Table 1).

Superscripts

boundary value problem.
flux-averaged concentration mode.
initial value problem.

production value problem.
resident concentration mode.

~ AN W

Dimensional parameters listed in Table 1 for the descrip-
tion of the two-site and two-region models are not included.
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