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First- and Third-Type Boundary Conditions in
Two-Dimensional Solute Transport Modeling
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This paper presents a general analytical solution for convective-dispersive solute transport in a

two-dimensional. semiinfinite porous medium. The solute is assumed to be subject to linear
equilibrium sorption and first-order decay. Solutions are derived for several third-type (Cauchy) or
flux-type boundary conditions at the input surface. After presenting a generally applicable solution a
special solution is given for a strip-type solute source. It is shown that the third-type boundary
condition correctly conserves mass in the two-dimensional system and that the first-type (Dirichlet) or
concentration-type boundary condition corresponds to a situation that the solute flux at the source
decreases with time and at large time approaches to the solute flux of the third-type boundary
condition. This can lead to significant discrepancies in the calculated concentrations, especially near

the source boundaries.

INTRODUCTION

During the past several decades a large number of analyt-
ical solutions have been developed for estimating the fate
and transport of various constituents in the subsurface
environment. Application of these solutions is generally
limited to steady groundwater flow fields and to relatively
simple initial and boundary conditions. Nevertheless. these
analytical solutions play an important role in contaminant
transport studies, giving initial or approximate estimates of
solute concentration distributions in soil and aquifer sys-
tems. and allowing for verification of the accuracy of more
elaborate numerical models.

The convection-dispersion equation has remained the ba-
sis of most analytical and numerical studies of solute trans-
port. With few exceptions, almost all currently used two-
dimensional solutions and documented computer codes are
based on first-type (Dirichlet) boundary conditions which
specify given concentrations at the input surface (e.g.. Bruch
and Street [1967), Carnahan and Remer [1984]. Cleary and
Ungs [1978), Batu [1983), and Javandel et al. [1984]. among
others). Following earlier work by Brigham [1974], Kreft
and Zuber (1978], and others, Parker and van Genuchten
[1984a] showed that these solutions do not conserve mass in
one-dimensional systems if concentrations are interpreted to
represent the usual volume-average (or resident) quantities
(i.e., amount of solute per unit volume of fluid in the
system). However, the one-dimensional solutions did con-
serve mass when concentrations were considered to be
flux-averaged values (amount of solute per unit volume of
fluid passing through a unit cross section during a unit time
interval). Improper distinction between volume-averaged
(resident) concentrations C, and flux-averaged concentra-
tions Cy, and the associated boundary conditions. can easily
lead to significant concentration discrepancies, especially for
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relatively short one-dimensional finite or semiinfinite sys-
tems with large dispersivities [van Genuchten and Parker,
1984].

Recently, a number of studies also stressed the impor-
tance of distinguishing between volume-averaged and flux-
averaged quantities in two-dimensional approaches. For
example, Tang and Peaceman [1987) and Chen {1987} used a
third-type condition at the injection well boundary to derive
analytical solutions for radial dispersion and convection in
an aquifer, while Sposito and Barrv [1987] discussed the
problem of C, versus Cs in a stochastic framework. The
purpose of this paper is to develop a general analytical
solution for two-dimensional solute transport subject to a
third-type input boundary condition. Specific solutions are
also derived for a single strip source. We shall show that the
third-type solution for C, correctly conserves mass in the
system. and the first-type solution corresponds to a situation
that the solute flux at the source decreases with time. which
results in significant discrepancies between the correspond-
ing concentrations in certain situations.

GOVERNING EQUATIONS

The partial differential equation describing convective-
dispersive solute transport in a multidimensional porous
medium is

a(IIR‘/C,)

Py =V -F-vnR,C, (1)
where V is the vector differential operator. F is the solute
flux density vector, n is the porosity. C, is the volume-
averaged (resident) concentration. R, is a solute retardation
factor arising from linear equilibrium sorption onto the solid
phase, and v is a first-order decay coefficient which assumes
equal rates of decay in the solid and liquid phases of the soil
(e.g.. as for radioactive decay). Equation (1) in a Cartesian
coordinate system takes the form
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Fig. 1. Schematic representation of semi-infinite porous medium in unidirectional flow field with flux-type inputs at
the boundary sources.

a(nR,C,) oF, 9F, OF,
—Y = -——-——-——wR,C, )
at ax dy 9z

where F_, F,, and F, are the convective-dispersive flux
components in the x, y, and z directions, respectively. We
limit our analysis to a groundwater flow system with a
uniform seepage (or average pore water velocity) field U.
Assuming that the x coordinate is aligned with the direction
of flow, the convective-dispersive flux components can be
written as

F,=nUC,—nD,3CJlox 3)
Fy= —nD, 3C/ay @
F,= —nD, 3C/laz (5)

where D,, D, and D, are the dispersion coefficients in the x,
¥, and z directions, respectively. Substituting equations (3),
(4), and (5) into (2) and assuming a homogeneous and
isotropic medium at constant water porosity leads to the
solute transport equation

ac, 3%Cc,  a’C, 3%, acC,
Ry—= x_a+D\'_1+D:——"——U—_—VR‘jC’
at ax? 7 oyt 9z* dx
' (6)

which will be solved below for a two-dimensional x—z
coordinate system.

INITIAL AND BOUNDARY CONDITIONS

Consider a unidirectional flow field containing strip solute
sources whose concentrations are functions of the z coordi-
nate, as shown schematically in Figure 1. The medium is
semiinfinite in the x direction (0 < x < =) and infinite in the
z direction (- < z < ). Because the source concentration
is a function of the z coordinate, the flux component at x = 0
will be a function of z as well. Note that all concentrations
are independent of y.

The initial condition of the two-dimensional (x, z) system
is taken as

Clx,2,00=0 v

From (3). the boundary conditions at the sources (x = 0) can
be written as

Fx(o‘ Z) = IIUC",‘.(Z) Hi— 1 <z< Hi . (8)
(i=1,2,...,n
F(0, 2) = nUC,, -Hi<z< -H;_, 9)
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G=1,2,...,m)
where Hy = Hy = 0, and (see Figure 1)

Hi=2 L (10a)

ji=1
H=2 L
Jj=1

(106)

Atinfinity the following boundary condition can be assumed:

im Cix,z,0)=0 (n
r=(x2+zH)1" (12)

GENERAL SOLUTION

The two-dimensional form of (6) in x-z coordinates with
the preceding initial and boundary conditions is solved using
Laplace transform and Fourier analysis techniques. After
taking the Laplace transforms of (6), using the initial condi-
tion described by (7) and involving the boundary condition at
infinity (11), the following solution in the Laplace domain
results [Baru, 1983, equation (25)]:

¢ (= U k(A)
{x, z, S)—J; exp 0. D. X

- [A(A) sin (Az) + B(A) cos (A2)] dA

(13)

in which

C,=Clx, z, S)=j e™'Cx, z, 1) dt (14)

1]

UZ 172
k(A) = {DXDZ)\Z + RyD (s + v) + T] (15)

where A(A) and B()) are constants. After implementing the
boundary conditions at x = 0 into the Fourier integral
formula one obtains the following closed form solution for
C,(x, z, 5) (see Appendix A for details):

: 1 feexp {[(U/2Dx)—(k(/\)/DI)]x}JA e
Clx 2, 5)=— JO SHUR)+ k)] (A)dr (16)
where
= F (0, p)
JA) = f ‘(np cos[Az-pldp  (7)

The inverse Laplace transform solution of (16) is derived
in Appendix B. We obtained the following result:

1 r=exp (Ux2D))
Clx,z,1) =—f —_—
T Jo D,

N

. {j, exp {—K (u, M)][G(1)—G>w)] dl(J J(A) dA (18)
0

where
UM Du
K. A)=vu + +— 2 (19)
de Rd
D 1”2
Giu) = (—-—) exp [—Kx(w)] (20
7R u
U
Go(u) = — exp [K;(w)] erfc [K4(u)] Qn
2R,
Kau) Rx” 2
2 _4D,u @2)
Kaw) Ux Uy »
= +
W = . T R, @3
Ko Ryx U (D" 24
= —  — —_—
= Rt 2D, Ry @4

SPECIAL SOLUTIONS

Single Strip Source Solution

Using the general solution given by (18), special solutions
can be obtained for any combinations of solute strip sources
as shown in Figure 1. For example, Figure 2 shows the
geometry of a single strip source in which case L, = L = B.
The boundary conditions at x = 0 take the form

FX(O, 2)
=UC,, —-B<z<B (25a)
n
F(0, z
=0 otherwise (25b)
n
Introducing (25) in (17) gives
2UC,,
JA) = sin (AB) cos (Az) (26)

Substituting (26) in (18) gives

2UC,, Ux '
Clx,z,0)= exp ] Js(A)
0

wD, 2D,

Uu
cexp| —vu— IR.D. [G\(w) — Ga(u)] du (27)

where

= D.ur?\ 1
Js(A) = f exp (— ) -/\— sin (AB) cos (Az) dA
0

R, (28)

This integral can be evaluated in a manner similar to Baru
[1982, equations (61)~(72)]. The final result is

J(A)—z " Ryz+ B) " Ryz—-B) »9) -
R Rl PYR WL Bl Py @9)

Finally, introducing (29) in (27) gives the following equa-
tion for the volume-averaged concentration distribution:
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Fig. 2.

uc, r 1
C,(X, Z, t) = W L m Fl(ll)[F4(ll) - Ffi(ll)] du

-

U~ !
— m Cn fo exp (—vu) Fr(u)[Fylu) — Fs(u)] du  (30)
where
- Ux Uu Ky -
() = exp 2D, vu AR.D. 2(ue

Ux
F>(u) = exp E F3(u0) (32)
F3(u) = erfc [K4(w)] (33)
Fulu) = erf | 22+ B) (34)
A = et D R
R4z —B)
= erf | — 35
Fs(u) = erf I:Z(D:R,IH)”Z} (35)

Solutions for Two or More Strip Sources

Equation (17) represents the geometrical distribution of
the sources and their source concentrations. For any number
of sources, only the integral J(A) needs to be evaluated. The
other part of the general solution (18) remains the same for
any arbitrary combination of the individual sources. The

y
The geometry of a single strip source.

general solution is also valid for any type of z-dependent
source concentration. For C,, = C,(z), (17) can be evaluated
either analytically or numerically depending on the func-
tional distribution of C,,(z).

MobEL EVALUATION AND VERIFICATION

Equation (30) gives residence concentration distribution
for a single strip source. The integrals in (30) were evaluated
numerically by means of Gaussian integration using 256
quadrature points. Normalized concentration distributions
calculated with (30) for the third-type boundary conditions
were first checked by comparison with the analytical solu-
tion for the one-dimensional case [Lindstrom et al., 1967].
Comparisons were made for the parameters (and results)
given in Table 6 of van Genuchten and Alves [1982, p. 118)]
thatis, U = 1 m/d, D, = 4 m?/d and R,y = 1. In order to
reproduce correctly the one-dimensional results we used a
very small transverse dispersion coefficient D.of 107" m%/d
and a very large strip source width B of 104 m. Essentially
identical results were obtained for the one- and two-
dimensional solutions (results not shown).

Analytical results based on (30) were also compared with
numerical results generated with a finite-element groundwa-
ter flow and solute transport code called GEOFLOW [Inter-
national Technology Corporation, 1986}, International Tech-
nology Corporation’s in-house semi-three-dimensional
groundwater flow and solute transport code. A domain of
75 x 50 m* was used in the numerical model which con-
tained 432 four-node quadrilateral elements. No-flux concen-
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Fig. 3.

tration boundaries were imposed at z = +25 m, while a
zero-concentration gradient was assumed along the down-
stream boundary at x = 75 m. The finite element dimensions
were between 1.25 and 5 m, with a fine grid near the source

Comparison of the analytical and finite-element results for the normalized concentrations obtained in the
longitudinal direction with third-type boundary condition (R; = 1, ¢ = 100 days).
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Fig. 4. Comparison of the analytical and finite-element results for the normalized concentrations obtained in the
transverse direction with the third-type boundary condition (Ry =1, t = 100 days).
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boundary. The width of the source strip was taken to be
10 m. Calculated normalized concentration distributions
versus x and z after 100 days for a retardation factor R,of 1
are shown in Figures 3 and 4, respectively. Note that the
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Fig. 5. Temporal and spatial variations of F {0, z)/nC,, at x = 0 for the first-type boundary condition.

analytical model holds for a semi-infinite domain in the x
direction, while the numerical solution assumes a finite
domain with a downstream boundary at x = 75 m. However,
the calculated numerical normalized concentrations should
be unaffected by the location of downstream boundary as
long as the concentration front does not reach that bound-
ary. As can be seen from Figures 3 and 4, the comparison of
the two-dimensional analytical and finite-element results for
the third-type boundary condition is excellent.

We also verified the accuracy of the first-type analytical
solution as given by Batu [1983] by comparison with data
listed in the work by Javandel et al. (1984, pp. 134, 137],
based on the solution of Cleary and Ungs [1978]. The
answers were essentially the same and are not presented
here.

In Figure 5 the convective-dispersive flux component for
the first-type (Dirichlet) boundary condition along the z axis,
Fi/(nC,,), is presented at x = 0. Because of symmetry, only
half of the curves are given. Figure 5 clearly shows that the
flux decreases with the increase of time and becomes con-
stant when the system reaches steady state. This is in
contrast to similar results for the third-type boundary con-
dition whose flux component at x = 0 remains constant at
F./(nC,) = U (=0.1 m/d).

Figures 6-8 compare the concentration distributions for
the first-type and third-type boundary conditions for ¢ at
=10, 100, and = (steady state) days. The concentration
profiles correspond to z = 25 m. These graphs clearly show
that the first-type boundary condition predicts normalized
concentrations with significant discrepancies with the third-
type boundary condition during transient conditions, espe-

cially near the input boundary. The principal reason for this
situation is that the first-type boundary condition corre-
sponds to the situation that the solute flux at the source
decreases with time (Figure 5), whereas the solute flux for
the third-type boundary condition case is constant. For large
times and steady state transport conditions the resuits be-
come approximately the same. For example, the first-type
boundary condition in this example predicts more than 3
times higher concentrations at 1 = 100 days than the third-
type boundary condition does.

MAass BALANCE CONSTRAINTS

Assuming no decay (v = 0), mass balance considerations
lead to the following equality for the solute transport situa-
tion depicted in Figure 2:

2BnUC,,t = nRy f j Clx,z, hdxdz (36)
x=0Jz==

Equation (36) is the two-dimensional equivalent of (6) of van
Genuchten and Parker [1984]. With (25), the left-hand side of
(36) is equivalent to 2 BF (0, 2)t. This quantity gives the mass
of the solute entering into the medium through the strip
source between times 0 and f. The thickness of the source
perpendicular to the x-z plane is considered to be of unit
length. The right-hand side of (36) gives the total mass of the
solute recovered in the system during the same time period.
In other words, whatever is added at the source (term on the
left) must be found inside the solute transport medjum (term
on the right).
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Fig. 6. Comparison of the normalized concentrations for the first-type and third-type boundary conditions for ¢ = 10
days.

We will now show that the mass balance constraint
imposed on (36) is indeed met if C, is given by (30). To do
this, let us take the Laplace transform of (36) to give

l x< x -
2BUC, == Rdf J( Clx,z,8)dxdz (37)
s
=0 ——

Mathematically, it is easier to work with (37) than with (36).
Appendix C shows that, with the introduction of (16) and

(26). the right-hand side of (37) results in exactly the same
form as its left-hand side. This means that the mass balance
requirement is satisfied exactly for the third-type (Cauchy)
boundary condition.

However, large discrepancies in (36) may occur when the
first-type solution is substituted into the mass balance con-
straint, especially for large longitudinal dispersivities. The
potential magnitude of these discrepancies are illustrated
indirectly by the differences between the first- and third-type
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Fig. 7. Comparison of the normalized concentrations for the first-type and third-type boundary conditions for ¢ = 100
days.
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solutions shown in Figures 6-8. The discrepancies for the
limiting case of one-dimensional transport were previously
given by equation (8) of van Genuchten and Parker [1984]
and plotted in their Figure 1 as a function of the dimension-
less variable { = U*t/D,R.

VOLUME-AVERAGED VERSUS FLUX-AVERAGED
CONCENTRATIONS

Several papers previously discussed the importance of
distinguishing between volume-averaged (resident) concen-
trations C, and flux-averaged (flowing) concentrations Cr
during one-dimensional solute transport [Brigham, 1974;
Kreft and Zuber, 1978; Parker and van Genuchten, 1984a].
These studies established the following relationship between
Crand C,:

D, aC,
Cr=C,——— (38)
This transformation was shown to leave the one-
dimensional transport equation invariant, indicating that the
transport equation can be formulated in terms of both C, and
Cr [Kreft and Zuber, 1979: Parker and van Genuchten,
19845]. Equation (38) also applies to the two-dimensional
case described by our (6) and the invoked initial and bound-
ary conditions. The invariance of (6) to the transformation
given by (38) is most easily shown by rewriting (6) in the
form

R aC, b a%C, 5 a%C, Uac, RC
4=—=D,—5+D, — ~ -
ot TF a2 T Vi ax A
D, 3 aC, 3’%C,
+—_ e e —
Uax| ‘ot " oax?

aC,

8%C,
- D. +U—+ vR,C,
dx

ozt

39

Note that the last term (in square brackets) is identical to
zero as predicted by (6). Combining terms in (39) gives

3 D, C, b 3’C, D?s3C,
Ry—|C—— = —_—
T\ U ax “axt U axd
9°C, D.D. 3°C,
+|{D,—~——— S
972 U axaz’
aC, b a%C, R vD R, dC,
-U +Dy—5—vR,C, + 40
ax T 9x? d Ix (40)
or with some rearranging
) c D, aC, a2 c D, aC,
R\ Tox) P02\ T o
8% D, 3C d
— C —_—— | = —_—
*D. az* " Uax dx
D, oC, c D, sC,
. -] - 41
Ry N7 U ox “n
and hence with (40)
aCy 3*Cy . 2€ .
— =D, — P -
Rar =Dx g T D7 — vRCy “2)

which is of the same form as (6). Application of (37) to (8)
and its associated equations transforms the third-type
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boundary condition in terms of C, into a first-type condition
for Cy, that is,

Cr(0, z, 1)=Cn(2) H,_y<z<H, (i=1,2,--+,n

(43a)

Cr(0. 2, 1) = G (2) ~H/<z<-H[_, (43b)
(i=1,2, , m)

Because the remaining initial and boundary conditions re-
main invariant under transformation (38). it follows that the
first-type solution given previously by Baru [1983] represents
the flux-averaged concentration.

Equation (38) gives the flux-averaged concentration Crin
terms of the volume-averaged concentrarion C,. The equa-
tion can be used immediately to derive the first-type solution
from the third-type solution. Alternatively, the third-type
solution may be derived from the first-type solution by using
the inverse of (38) (see also van Genuchten et al. [1984,
equations (74a) and (74b))):

U Ux "% |U§
Clx,z,n= B; exp D_x jx exp —D_\' Cel¢, z, 1) dE

44

One may verify that (44) indeed transforms the Laplace
domain solution for the first-type case (see equation (33) of
Baru [1983], with y = 0) into the Laplace solution for the
third-type boundary condition (equation (16) of this paper).

The above considerations show that the analytical solu-
tions of (6) for the first- and third-type boundary conditions
are related to each other through (38) and (43) and that these
solutions represent flux-averaged and volume-averaged con-
centrations, respectively. This interpretation is analogous to
the one-dimensional situation described by Parker and van
Genuchten [1984a]. However, we emphasize that the above
relationships (38 and 43) between the first- and third-type
analytical solutions of (6) only hold for the simplified trans-
port problem considered in this study, that is, for undirec-
tional steady flow perpendicular to the input boundary at
x = 0. In more general situations (including radial flow),
additional terms in (42) will be generated when (38) is used to
derive the flux-averaged concentration from the volume-
averaged concentration [see Sposito and Barry, 1987]. Thus
first-type analytical solutions do not always represent flux-
averaged concentrations in two-dimensional transport mod-
els.

SUMMARY AND CONCLUSIONS

A general analytical solution given by equation (18) has
been developed for solute transport in a two-dimensional,
semi-infinite system subject to a third-type, Cauchy, or
flux-type boundary condition at the source boundary. The
governing equation includes terms accounting for convective
(advective) transport, dispersion, linear equilibrium adsorp-
tion, and first-order decay. Special solutions for a single-
strip source are also derived. Mass balance principles were
applied to the third-type solution as well as to a previously
derived first-type solution for the same problem [Baru,
1983]. Assuming no decay, it is shown that only the third-
type solution satisfied the global mass balance of the trans-
port system and that the first-type solution corresponds to a
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situation that the solute flux at the source decreases with
time, which results in significant discrepancies between the
corresponding concentrations, especially near the source
boundary. We have also shown that for the simplified
transport problem of this study the first-type solution repre- -
sents flux-averaged concentration.

APPENDIX A: DERIVATION OF EQUATION (18)

The Laplace transform of (3) is

F, ( . aC,)
—=|UC,-D, — s (A1)
n dx

From (15)

aC, [ U k(A)J = U kQA)

= - exp —_—— x
ox |2D. D, fo 2D, D,
- [A(A) sin (Az) + B(A) cos (A)]dA (A2)

and introducing x = 0 in (15) and (A2), respectively, gives

Cleoo= fx [A(A) sin (AZ) + B(A) cos (Az)] dA (A3)
0

ac, U k)

dx x=0_ ZDV‘_E—

. fx [A(A) sin (A2)+B()) cos (Az)] dA (A4)
0
Introducing (A3) and (A4) in (A1) gives

Fx(07 z-) x - -
= f [A(A) sin (A2) + B(A) cos (A2)] dA  (AS)
0

n

where

. U
A(d) = A(A){U - D, [ZD_‘ - k(/\)]}s (A6)

- U
B(A) = B(/\){U - DI[E - k()\)}}s (A7)

X

The general form of the Fourier integral formula [Churchill,
1941, p. 114] is

1 ke -3 o
fl2) = ; f sin (A2) j Sf(p) sin (Ap) dp dA
0 -

1 x o
+ —f cos (AZ) f S(p) cos (Ap) dp dA (A8)
0 ~o

m

Here £(2) and f(p) correspond to F (0, z)/n and F,(0, plin,
respectively. Introducing these values in (A8) gives

F0,9 1 (= = F(0,p) |
=—f sin (Az) f sin (Ap) dp dA
™ J, e

n n

1 x . * Fr(0~ p)
+—f cos ()\z)f
7)), . 7

sin (Ap) dp dA  (A9)
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or

F(0,2) =1 = FJ(0.p)

- sin (Ap) dpJ sin (AZ) dA

b4 l x F‘—(O. [])
+ _
/[(; Tff_x n

+ cos (Ap) dpJ cos (AZ) dA (A10)
From (A5) and (A10)
_ 1 = F(0, p)
A(_/\)=—f sin (Ap) dp (All)
T J_. N
B I = F0, p)
B(A) = —f cos (Ap) dp (A12)
T J . n

Substituting (A11) and (A12) into (A6) and (A7), respec-
tively. the values of A(A) and B(A} can be determined. Then
introducing A(A) and B(A) in (15) leads to the final solution as
given by (18).

APPENDIX B: THE INVERSE LAPLACE TRANSFORM
OF EQuATION (18)

To evaluate the inverse Laplace transform of (18), the first
translation or shifting property [Spiegel, 1965] will be used.
Equation (17) may be written as

K(A) = [RyD (s — b)]'? (B1)
where
v D, |
b=—v-— —-— A" (B2)
4RdD.( Rd
Introducing (B1) and (B2) in (18). C, takes the form
Clx, z,5) =~
w
=exp {[(UR2D,) — (1/D )(R,D (s — b)) "*]x}
. p{l ) 4D, ) aa
0 - SDX{(U/ZDx) + (I/D\')[RdDr(s - b)] -}
(B3)
or
) I =fls—b)
Clx,z,5) =-—f J(A) dr (B4)
7 S, s
where
exp {{(UR2D,) = (D )[R4D,(s — b)]"*]x}
fis =y =228 : s (BS)
D{URD,) + (/D[R D, (s — b)}}
If
L™ Ye(s)} = G) (B6)

then
F(n = L™{f(s = b)} = e¥G(r) (B7)
Clx, 2, )= L™ Clx. 2, 5 — b)}
1 r=fls=b)
=L "{— f Jd/\}
w 0 N
| x '
=-—f f F(u) Jduda (B8)
T Jo Jo

where

U -1
gls) = [— + D;‘(RJD,.n”ZJ exp [-D; (R D,s)"x]

2D,
(B9)

The inverse of (B9) is [Carslaw and Jaeger, 1959, p. 494,
equation 12]

G(1) = E\(1) — Ex(1) (B10)
where »
D, \ 2 Ry’
E) = (E;) exp <—4D,t> (B1l)

U Ux U-t
El(’) = €exp +
2R, 2D, 4R.D,

[ Rx U [Du\"
- erfc e T | — (B12)
Z(RJD_\J) - 2Dx Rd

and from (B2), (B7), and (B10)

I U? D.A?
t_*

t
4R D, Ry

—-pt -

F(r) = exp

JG(!) (B13)

By writing « instead of ¢ and introducing F(«) in (B8) leads to
the final solution as given by (18).

APPENDIX C: PROOF OF THE MAss BALANCE
FoR THE THIRD-TYPE (CAUCHY) BouNDARY CONDITION

In this appendix we show that the right-hand side of (37) is
exactly equivalent to its left-hand side. Introducing (26) into
(16) with v = 0 gives
& ) = exp {[(U2D,) - k()]x}

Ax, 2, 8) =—
™ fo DA(URD;) + (UD)[RD (s ~ b)]"3}

2UC,,

sin (AB) cos (Az) dA (ChH

With (B1), (C1) takes the form

lj‘x eXp{(Ux/ZD_,)—( l/D.r)[RdDT(S—'b)]“zX}
0

Cr(xq Z, S) = ; {(U/?.) + [R([D_((S _ b)]l.’l}s

2UC,,

sin (AB) cos (Az2) dA (C2)
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Introducing (C2) in the right-hand side of (37) (denoted by
Ig) gives

* I (= * Uce 1
IR-RdL:O ;’[:ij-x exp ?._D,_a
, U -1
* [RyD (s - b)]mx)[<-2~+ [RyD (s - b)]l/‘l)SJ }

2
- cos (Az) dx dzJ = sin (AB) dA (€3)
Integrating (C3) with respect to x gives
= 1 x 1
Ir=R = A7) d
R df/\=0 T _Z(Rds+D:)\')sCOS( 2) dz
UC,
. sin (AB) dA (C4)

Because of the symmetrical property of the integrand in (C4)
with respect 10 z, I can also be written as

4UC, R,y (= = sin (AB) cos (Az)
Ig= —— s—— dA | dz ()
s 0 0 (Rys + D.A")A
By considering Figure 2, (C5) can be written as
4UC,,Ry (B = | sin (AB) cos (Az2)
s 0 o D: A[A*+ (Rys/D)]
4UC, R,y (= = 1 sin (AB) cos (Az) . J -
+— ————
s fB L D, A E+ (RgiDy] ) (€O
This equation can also be written as
4UCma B "
IR:- f 11 dZ+J lde (C7)
s 0 8
where
1 = sin (AB) cos (Az)
L =— —s—————dA 0<z<B (C8)
DZ 0 A[A + (RdS/Dz)]
1 [=sin (AB) cos (Az)
12=—f —s—————dA B<z<o (C9)
2 Jo A[A®+ (Rys/D)]

The integrals given by (C8) and (C9) can be evaluated
analytically with the equation given by Gradshteyn and
Ryzhik [1965, p. 408,equation 3.725-3]:

T RdS 1/2
h=——exp|-B| —
2R P D,

Rys\ 2 - <0
. — +
cosh |z D. Ry
R.s 1/2 Rds
L= i exp | — = z| sinh | B{ — (CID
ZRdS D: ‘D:

With (C10), the first integral of (C7) can be developed as
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- - D. 12
I dz =~ —
fo LT aRys <Rds>
Rds 2] B
*yexp|—-2Bf — + —
D) || 2R

Similarly, the second integral of (C7) can be written as

- T D.\ 72 r Rys 12
I d:= — I -exp|2B| —
8 4Ry s \Rys i D,

(C13)

Introducing (C12) and (C13) in (C7) and after some manipu-
lations, the following expression can be obtained

(C12)

Ir =2BUC,, (Ci4)

":\)l —

which is exactly the same as the left-hand side of 37.
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