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ABSTRACT
Analytical solutions are presented for two convection-dispersion

type transport models useful for studying simultaneous pesticide
sorption and degradation. One solution is for the familiar two-site
sorption model in which adsorption-desorption proceeds kinetically
on one fraction of the sorption sites, and at equilibrium on the re-
maining sites. Another solution holds for two-region (or mobile-im-
mobile liquid phase) transport appropriate for aggregated or frac-
tured media. The transport models account for degradation in both
the solution and sorbed phases. The dimensionless analytical so-
lutions for the two-site and two-region models are shown to be iden-
tical; they contain up to six independent dimensionless parameters:
a column Peclet number, a retardation factor, a coefficient parti-
tioning the soil/chemical system in equilibrium and nonequilibrium
parts, a rate coefficient, and two dimensionless degradation coeffi-
cients. One of the two independent degradation coefficients may be
eliminated when the solution and sorbed phase degradation rate coef-
ficients are assumed to be identical, or when, with additional but
reasonable assumptions, adsorbed phase degradation is assumed to
be negligible.

CONCERN about the fate of chemicals introduced
into soil-water systems has recently intensified.

It is often necessary to estimate the behavior of a
chemical in the field without substantial knowledge of
the interaction of the chemical with the solid phase
or its degradation rate. As new chemicals are proposed
for future use, or as closer scrutiny is given to those
already in use, it is necessary to utilize scientifically
sound, comprehensive tools to evaluate the potential
behavior of these chemicals in the environment. Well-
constructed tools in the form of models describing
transport in soil-water systems also serve the comple-
mentary purpose of increasing our understanding of
basic processes affecting chemical fate.

Analytical solutions of the classical convection-dis-
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persion equation (CDE), or of alternative equations,
have been widely used as models of chemical trans-
port and transformation in soil-water systems. Al-
though such models are limited to conditions of
steady-state water flow in homogeneous soils, and
hence are primarily useful only for interpreting labo-
ratory experiments, valuable information has been
gained through their use. The application of analytical
models to the study of pesticide transport in soils has
actually been a standard practice for many years
(Lindstrom et al., 1967; Kay and Elrick, 1967; Dav-
idson et al., 1968; Davidson and McDougal, 1973;
O'Connor et al., 1976; Rao et al., 1979; Enfield and
Carsel, 1981; Jury et al., 1983, 1984; Zhong et al.,
1986). Models of this type have been reviewed a num-
ber of times (van Genuchten and Cleary, 1979; Niel-
sen et al., 1986), and have recently been placed within
the perspective of other approaches to describe solute
transport (Addiscott and Wagenet, 1985; Jury, 1984).
A variety of analytical solutions are currently avail-
able (e.g., van Genuchten and Alves, 1982; Javandel
et al., 1984), some of which have now been included
into optimization packages usable on a routine basis
for interpretation of laboratory or field tracer experi-
ments (Parker and van Genuchten, 1984).

Pesticide transport is influenced by a large number
of simultaneous processes and properties. Among the
nonequilibrium processes influencing transport is the
possible division of sorption sites into two types. The
two-site sorption concept presumes that sorption or
exchange sites in soils can be classified into two frac-
tions: one fraction (Type-1) on which sorption is as-
sumed to be instantaneous, and another fraction
(Type-2) on which sorption is considered to be time-
dependent. The resulting two-site model has been suc-
cessfully used to describe the transport of a number
of solutes (Selim et al., 1977; Cameron and Klute,
1977; Rao et al., 1979; DeCamargo et al., 1979; Hoff-
man and Rolston, 1980; Parker and Jardine, 1986)
that interact with a solid phase composed of such dif-
ferent constituents as soil minerals, organic matter
and various oxides. Studies of the sorption of 2,4-D
(2,4-dichlorophenoxy acetic acid) and atrazine (2-
chloro-4-ethylamine-6-isopropylamino-l,3,5 triazine)
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(Rao et al., 1979) indicate that the two-site model may
well be suitable for these pesticides.

Another nonequilibrium model that has been found
useful for modeling solute transport is the "two-re-
gion' or "bi-continuum" transport model (Coats and
Smith, 1964; Gaudet et al., 1977; van Genuchten and
Cleary, 1979; Nkedi-Kizza et al., 1984) in which the
sorption rate is thought to be limited by the rate at
which solutes are transported by diffusion to the ex-
change sites. This conceptualization has led to phys-
ical nonequilibrium models that partition soil water
into mobile (flowing) and stagnant (immobile or non-
flowing) regions. The approach in effect assumes that
the pore-water velocity distribution is bimodal: con-
vective-dispersive transport is confined to only a frac-
tion of the liquid-filled pores, while the remainder of
the pores have stagnant water (e.g., dead-end pore
water, intra-aggregate water, thin liquid films around
particles). In models of this type, solute exchange be-
tween the two liquid phases is frequently considered
to be a first-order rate process. We note that similar
"mobile-immobile" type two-region transport models
have also been used for modeling solute transport in
river systems containing dead zones (Bencala and
Walters, 1983; LeGrand-Marcq and Laudelout, 1985).

Microbial degradation is another process of impor-
tance to pesticide transport. Biodegradation of organic
chemicals has classically been presumed to occur pri-
marily in the liquid phase of the soil. Whereas deg-
radation in the sorbed phase has at times been meas-
ured (Marshman and Marshall, 1981; Moyer et al.,
1972; Scott et al., 1983), other studies with such her-
bicides as 2,4-D (Ogram et al., 1985), diquat (1,1'-
ethylene-2,2'-bypyridylium ion) (Weber and Cole,
1968) and triazine (Moyer et al., 1972) indicate that
the sorbed phase may not always be available for deg-
radation. Thus, the separation of pesticide degrada-
tion into relative contributions of the sorbed and so-
lution phases is a continuing concern for soil scientists
and soil microbiologists dealing with the environmen-
tal fate of pesticides.

Analytical solutions of two-site and two-region type
models with solution and sorbed phase degradation
are needed to fully interpret pesticide transport ex-
periments involving laboratory soil columns. Such ex-
periments in turn are designed to estimate future pes-
ticide behavior in field soils (e.g., Zhong et al., 1986).
In this paper we shall develop the governing equations
and relevant analytical solutions for these two-site and
two-region transport models with degradation. For
completeness, we shall also formulate the classical
equilibrium and one-site kinetic transport models
with degradation. In a later study (Gamerdinger et al.,
1989) we will use the analytical models to analyze a
set of column displacement experiments with atrazine
and 2,4,5-T (2,4,5-trichlorophenoxy acetic acid).

LINEAR EQUILIBRIUM SORPTION
We first derive the governing equation for classical "Fick-

ian"-based, deterministic solute transport with degradation.
Consider a soil system (Fig. 1) composed of a liquid phase
involving convective and diffusive/dispersive transport, and
a solid phase subject to chemical sorption or exchange. The
continuity equation for the liquid phase is

d(8c)
dt dx [1]

where c is the volume-averaged solution concentration (with
units M Lr3), 0 is the volumetric water content (L3 Lr3 or
L°), ft/ is a first-order decay coefficient for degradation from
the liquid phase (T-1), x is distance (L), t is time (T), Ja is
a transfer rate from the solution to the sorbed phase due to
sorption (M Lr3 T"1), and Js is the solute flux density (M Lr2

T-1),

[2]

in which D is the dispersion coefficient (L2 T-') and q the
volumetric water flux density (L T-')- Combining Eq. [1]
and [2] gives

Equation [1] is based on a mass balance of input and
outputs for the solution phase. A similar mass balance for
the sorbed phase leads to

ds
P — = Ja -at

[4]

where s is the sorbed concentration (A/°), p is the soil bulk
density (M Lr3), and ns is the first-order sorbed phase deg-
radation coefficient (T-1). Equation [4] states that the change
in sorbed concentration equals the transfer rate (Ja) from the
solution to the sorbed phase minus decay from the sorbed
phase. We will further use the term "sorption rate" when
referring to Ja. -

Equation [3] and [4] hold for the solution and sorbed
phases, respectively. Adding the two equations eliminates Ja
and leads to a transport equation for the soil system as a
whole

d(8c)
dt P dt

. [5]

This equation is valid irrespective of whether sorption is an
equilibrium or kinetic process. Equilibrium sorption pre-
sumes that solute exchange between the liquid and solid
phases occurs at such a rate that at all times the sorbed
concentration, s, is uniquely related algebraically to the so-

Equilibrium: rr = k rr-^————— dt dt

Kinetic: J = ap (kc-s)

Fig. 1. Schematic of the one-site equilibrium and kinetic sorption
transport models with degradation.
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lution concentration, c. If the sorption process is linear, this
leads to

Liquid Phase

s = kc [6]
where k is an empirical distribution coefficient (M~' L3).
Substituting Eq. [6] in [5] gives

dt dx dX
[7]

where R and fi are the retardation factor and total (or effec-
tive) degradation constant, respectively

R = 1+ pk/B [8]
[9]

Note that when the two degradation constants n, and ns are
identical (e.g., for radioactive decay), Eq. [9] reduces to n =
H,R. For chemical or microbial degradation, however, the
two rate coefficients likely have different values.

Equation [7] holds for transient fluid flow. For steady-
state flow in a uniform medium (constant 6 and p), the trans-
port equation becomes

where v = q/6 is the average pore water velocity. Analytical
solutions of this model for various initial and boundary con-
ditions are given elsewhere (van Genuchten and Alves,
1982).

ONE-SITE KINETIC ADSORPTION
Assuming linear kinetic sorption, the sorption rate, Ja,

from the solution to the sorbed phase is given by
Ja = ap(kc - s), [11]

where a is a first-order kinetic rate coefficient. Equations [3]
and [4] become now respectively,

at
- ~ qc)- ap(kc - s) -

c)£
dt

= a(kc - s) - ns

[12a]

[12b]

which is the one-site kinetic model for transient flow. For
steady-state water flow in a uniform medium, Eq. [12a] re-
duces to

dt dx2 [,„
It is important to recognize that Eq. [13] holds only for the
liquid phase, and as such only contains a decay term for the
liquid phase (last term of Eq. 1 3). By making use of Eq.
[12b], the sorption rate term may be eliminated from Eq.
[13] to give

dc pds d2c dc

This equation holds for the soil system as a whole and is
identical to Eq. [5] for steady-state water flow. Hence, the
one-site kinetic model is also given by Eq. [12b] and [14].
Note that the sorbed phase decay term appears now in Eq.
[12b] as well as [14]. This decay term was ignored by Lind-
strom (1976) in his classical derivation of the analytical so-
lution for first-order kinetic solute transport with decay (see
Eq. [1] of Lindstrom, 1976). We conclude from the above

[ ( l - f )kc -s ]

Fig. 2. Schematic of the two-site partial equilibrium, partial kinetic
sorption transport model with degradation.

step-by-step development that Lindstrom's 1976 formula-
tion is incomplete.

The one-site model is a special case of the two-site trans-
port model to be discussed next. Thus, analytical solutions
for the two-site model are directly applicable also to the
above one-site kinetic model.

TWO-SITE EQUILIBRIUM/KINETIC
SORPTION

Governing Equations
The derivation for this case proceeds in the same fashion

as for the one-site model. Since the two-site model itself has
been explained in detail elsewhere, only a capsulized deri-
vation is presented here to indicate the treatment of the
degradation terms. Following the notation of van Genu-
chten (1981) and Parker and van Genuchten (1984), we have
at equilibrium for the Type-1 (equilibrium) and Type-2 (ki-
netic) sites, respectively

sl=fkc [15a]
= (\-f)kc [15b]

where / is the fraction of exchange sites assumed to be at
equilibrium, and where the subscripts 1 and 2 refer to the
two Type-1 and Type-2 sorption sites, respectively. Total
adsorption, s, is given by

s = + s2 [16]
which at equilibrium becomes equivalent to Eq. [6].

Figure 2 shows schematically a soil made up of the liquid
phase, a Type-1 solid phase, and a Type-2 solid phase. Both
Jai and Ja2 are the sorption rates from the liquid into the
Type-1 and Type-2 regions, respectively. Mass transport in
the liquid phase is still described by Eq. [3], given that Ja
now becomes the sum of/„, and Ja2. The mass balances for
the Type-1 and Type-2 are similar to Eq. [4]

P — =at

dt

[17a]

[17b]

The mass transport equation for the system as a whole fol-
lows by adding the contributions of Eq. [3] and [17a,b], and
noting that Ja = Jal + Ja2

dt dt
= _

dx dx

[18]
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Because Type-1 sites are always at equilibrium, sorption
onto these sites is also given by the time-derivative of Eq.
[15a]

et at [19]

By using a first-order kinetic sorption rate law analogous to
Eq. [11], and by making use of Eq. [15b], the mass balance
equation for the Type-2 sites becomes

= a[(l - f)hc - s2] - [20]

Substituting Eq. [19] and [20] into Eq. [18] and using Eq.
[1 5a] to eliminate s, from the equilibrium sorbed phase deg-
radation term leads to

fpk)c
dt dX

[21]ap[(\ - f)kc - s2] - 0M/c - pptl c.
Hence, the complete two-site model is given by Eq. [20] and
[21]. •

Analytical Solution
For steady-state flow in a uniform system, Eq. [21] reduces

to

dx

[22]

Equations [20] and [22] are solved for an initially solute-
free, semi-infinite soil profile subject to a pulse-type input
boundary condition. Thus, the auxiliary conditions are of
the form

c(x,0) = 5t(jc,0) = s2(x,0) = 0 [23]

[24]

where C0 is the input concentration, and t0 is the time du-
ration of the applied solute pulse. To obtain a convenient
dimensionless system of equations consistent with those of
van Genuchten (1981, p. 27), the following variables are
introduced

T = vt/L z = x/L [26a,b]

R 1 + pk/0 Rm= 1 + fpk/d [28a,b]
« = a(l - &)RL/v, [29]

where L is an arbitrary distance from the input boundary
(e.g., column length). We also define the dimensionless con-
centrations c, and c2

Equations [22] and [20] become then respectively,

(i -0;
where

H,L M,,G
* v +

)R ~^ ~ u(Cl ~ C2) ~ ^2

3R — \)L (Oni + fpkfisl}
v a

[31b]

- [32a]

and

Analytical solutions of Eq. [31a,b] can be derived using
Laplace transforms as shown in detail, among others, by
Lindstrom and colleagues (Lindstrom and Narasimhan,
1973; Lindstrom and Stone, 1974; Lindstrom, 1976). We
omit here the relatively straightforward but extremely
lengthy derivation. The general analytical solution for our
problem is

c ( z T ) =Cl(Z'J)

where

ca(z,T) - ca(z,T - T0) T>T0

(z,T) 0 < T < T0 m,
[33b]- c6(z,r - r0) T > i

,0= !T g(z,r) J(a,b) dr [34a]
Jo

and

C2(z,0 = -^- £(Z,T) [1 - JM rfr [34b]
w + 77 J0

ro = vt0/L [35]

/(a,/?) = 1 - e-» f" fr*I0[2jb\] dX [36a]
Jo

fc = (co + ^(r - r) [36b>(;]

«(^T) = ,̂T) [37]

a =
+

0rv"
in which G(z,t) represents the analytical solution of

dG 1 d2G dG G [38]

for the same initial and boundary conditions as before. For
volume-averaged resident concentration (Kreft and Zuber,
1978; Parker and van Genuchten, 1984), g(z,r) is given by

WJ?

PR (u + r,)0R
1/2

7T/3/?
exp - P(pRz -

- [39]
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dt—— = a2 ~ Jo3 " "i m*t\ mc i m

Fig. 3. Schematic of the two-region (mobile-immobile) transport
model with degradation.

For flux-averaged or flowing concentrations, which are char-
acteristic of column effluent curves (van Genuchten and Par-
ker, 1984), g(z,r) becomes

W7J

(a

z PpR PtfRz - r)
~

[40]

TWO-REGION TRANSPORT MODEL WITH
DEGRADATION

Governing Equations
The derivation of the two-region model with first-order

degradation also parallels the no-decay case (van Genu-
chten, 1981; p. 12-16). The inclusion of degradation into
the two-region model appears somewhat more complicated
than for the two-site model. This is because local degrada-
tion rates inside aggregates can be radically different from
those occurring at aggregate edges due to varying O2 and/or
microbial activities. To keep the formulation general, we
need provisions for different degradation coefficients in the
mobile and immobile liquid phases, as well as for different
degradation coefficients for the mobile and immobile sorbed
phases of the soil. Thus, a total of four degradation rate
coefficients are possible in the two-region model, as com-
pared to three for the two-site model.

Figure 3 shows again schematically the most important
fluxes in a "two-region" soil system with decay. Convective-
dispersive transport is confined to a mobile liquid region
(subscript m) while the presence of solute in an immobile
region (subscript im) depends on liquid diffusion from the
mobile to the immobile liquid. The solid phase is also par-
titioned, in this case into a fraction / that equilibrates in-
stantaneously with the mobile fluid, and another fraction
(1 — /) that equilibrates with the immobile liquid. Using
the same notation as before, the transport equation for the
mobile liquid phase (subscript m) is

dc

— Ja\ —

where n,m is the mobile liquid phase degradation coefficient,
Ja[ is the transfer rate from the liquid to the solid phase of
the "mobile" region, while Ja2 is due to diffusion-like ex-
change between the mobile and stagnant liquid zones. Anal-
ogous to Eq. [4], the mass balance for the "mobile" sorbed
concentration (sm) is

f m
JP —— =

01
[42]

where nsm is the sorbed phase degradation coefficient for the
mobile region. Adding Eq. [41] and [42] gives the transport
equation for the mobile region as a whole

ds dc

sm • [43]
A similar mass balance without the convection-dispersion
terms holds for the stagnant region as a whole (subscript im)

dt
i - (1 - /)p/Wi« . [44]

Solute exchange between the mobile and immobile liquid
regions is approximated by the expression

Ja2 = <*(Cm ~ Cim) [45]

in which the model-specific a is a first-order mass transfer
coefficient describing the rate of transfer between the mobile
and immobile liquid phases. Sorption in the inter- and intra-
aggregate regions of the soil is described with linear iso-
therms of the form

sm = kcm sim = kcim. [46a,b]
Substituting Eq. [45] and [46a,b] into [43] and [44] gives
finally the transient-flow two-region transport model with
degradation

fpk)cn

dt dx\'"'-m ax ~ qc"
M,M + fpknsm)cm [47a]

= a(cm - cim)

h (1 - f)pknam}Clm . [47b]

a(cm - cim) -
~ f)Pk]ci

Analytical Solution
Assuming steady-state flow in uniform soil, Eq. [47a,b]

reduce to

- a(cm - cim) -

[41]

fpknsm)cm [48a]

[48b]

We use the same initial and boundary conditions as for the
two-site model (replace c by cm in Eq. [23] through [25]).
Introduce further the model-specific dimensionless param-
eters (T and z are as before)



1308 SOIL SCI. SOC. AM. J., VOL. 53, SEPTEMBER-OCTOBER 1989

Table 1. Expressions for the dimensionless parameters | and »j in Eq. [31a,b] for the one-site, two-site and two-region transport models.
One-site model Two-site model Two-region modelf

Solution and sorbed
phase degradation
rates are independent

Degradation
everywhere
the same

(0« - 1) *„

7) =

£ :

„ = (1 - 0)* ̂

Degradation
only in the
liquid phase

Degradation
only in the
sorbed phase

r, = 0

f = 0

1) = 0

1 -(!-«**!

Ml
t = (SR — 0m) ̂ im

, = [(1 - 0)* - <t>lm] ^

«„/«,*«.

P = VmL/Dn

e + Pk co = aL/^f

[49]

[50a,b]

= c/m/C0. [51a,b]
The dimensionless transport equations become then iden-
tical to Eq. [31a,b], provided % and r\ are now denned as

L'" ' " ^ [52a]

L
4 [52b]

The dimensionless initial and boundary conditions for the
two-site and two-region models are easily shown to be iden-
tical also. Thus, the analytical solution for the two-site
model also applies to the above two-region mobile-immo-
bile transport model with degradation.

DISCUSSION
The above formulations for the two-site and two-

region models were obtained without making any as-
sumptions about possible values of the degradation
coefficients M/, M*i, Mm/> etc. While at least in theory it
is possible that the degradation coefficients in any par-
ticular model will attain different values, in practice
it may be nearly impossible to distinguish between
them, with concomitant problems of parameter iden-
tification. This is especially true for the two-region
model which contains four potentially different deg-
radation coefficients. Thus, the number of degradation
terms needs to be reduced where possible. Fortu-
nately, it is possible to make several simplifications of
the most general case of unequal solution and sorbed
phase degradation rates.

One simplification results when all rate coefficients
are the same, e.g, M/ = M*I = V-& = M for the two-site
model, or M/« - M«« = MJm = fem = M for the two-
region model. The otherwise independent parameters
£ and t\ for the two-site (Eq. [32a,b]) and the two-
region (Eq. [52a,b]) models reduce then to (see also
Table 1)

| = 0R * n = (1 - PW [53a,b]
where the dimensionless parameter ^ is defined as

. [54]

Another significant simplification is possible when
degradation is assumed to be limited to the solution
phase, a situation that seems to hold for at least some
pesticide-soil combinations (Weber and Cole, 1968;
Moyer et al, 1972; Ogram et al, 1985). The solid
phase degradation coefficients are then zero (M,I = H&
= 0) and £ and 77 reduce to

* = */ u = 0 [55a,b]
where, similar to Eq. [54] and other cases shown in
Table 1, t/v = ^L/v.

Table 1 summarizes the expressions for £ and 77 for
the most general case of unequal degradation rates in
the solution and sorbed phases, as well as for several
limiting cases involving the one-site, two-site and two-
region transport models. Note that for the general two-
site and two-region formulations, £ includes all or part
of the effects of both solution and sorbed phase deg-
radation. The same is true for 77 in the general two-
region formulation. The parameters £ and i\ in both
models are in that case independent, leading to a total
of six independent dimensionless parameters: the col-
umn Peclet number P, the retardation R, a dimen-
sionless partitioning coefficient /?, a dimensionless rate
coefficient for kinetic sorption or mobile-immobile
type exchange w, and the two degradation rate coef-
ficients £ and 77. For equal degradation in the solution
and sorbed phases, £ and i\ become dependent, and
only five independent variables can be identified (see
also Table 1): P, R, 0, u and ^.

Five independent parameters also result when deg-
radation in the one-site and two-site models is limited
to the solution phase. Note that £ = ^/ (= M/£/V) in
that case, while i\ becomes zero (Table 1). However,
£ and 77 for the two-region model remain theoretically
independent because of the inclusion of the mobile
(</>m) and immobile water (</>im) fractions in f and 77.
These fractions are not independently included in any
other dimensionless variable (including 0 as shown by
van Genuchten and Cleary, 1979), and hence must be
considered separately. This could pose considerable
problems, especially when some of the parameters are
estimated from measured breakthrough data. Curve-
fitting is often necessary since the partitioning of the
liquid phase into mobile and immobile parts is gen-
erally not known a priori. We can avoid this problem
by assuming that the sorption sites and the mobile
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2 3 4 5 6 7 8

PORE VOLUME,!
Fig. 4. Effect of the dimensionless degradation coefficient, <!*, on the

shape of effluent curves calculated with the two-region model.

water fractions are distributed in the same manner
throughout the soil system, that is (Nkedi-Kizza et al,
1984)

*m = 0 » / 0 = / = / J [56]
so that the £ and rj parameters become

$ = 0*, i, = (l-18)^. [57a,b]
Note that £ and 77 are now the same as Eq. [53a,b] for
equal degradation in the solution and sorbed phases,
except that R now has been dropped.

Figure 4 illustrates the effect of degradation on cal-
culated effluent curves. All parameter values are the
same as used previously by van Genuchten and Cleary
(1979) to demonstrate the effects of the dimensionless
variables P, R, 0 and w on calculated effluent curves.
The one additional degradation parameter ^ in this
example assumes that degradation is everywhere the
same (Table 1). Given the assumption inherent in Eq.
[56], the curves also apply to the special case of so-
lution phase degradation only, provided the ̂ 's in Fig.
4 are multiplied by the value ofR (=3.0). Numerous
effluent curves were also calculated with the general
two-site/two-region model assuming unequal solution
and sorbed phase degradation coefficients. The curves
so obtained (not further shown here) behaved quali-
tatively very similar to those plotted in Fig. 4.
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