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ABSTRACT

1
M. Th. van Genuchten. 1983. Analyzing Crop Salt Tolerance Data:
Model Description and User's Manual. Research Report No. 120,

U.S. Salinity Laboratory, USDA/ARS, Califormia, 50 p.

This report describes a computer program that can be used to analyze
experimentally derived crop salt tolerance data. The program uses a non-
linear least squares inversion method to find the unknown parameters in
several salt tolerance response functions. One of three models included
in the program is the familiar piecewise linear response function. Appli-
cation of this function leads to estimates for the salinity threshold and
the slope of the response curve, Two alternative types of salinity
response functions are also considered. The report gives a detailed
description of the computer model and the required input data. Applica-
tion of the program is illustrated with several examples. A listing of

the program is given in an appendix.

lResearch Soil Scientist, U.S. Salinity Laboratory, 4500 Glenwood Drive,
Riverside, California 92501



1. INTRODUCTION

The presence or accumulation of excess soluble salts in the soil root
zone and its negative effect on crop productivity is a widespread problem,
especially in the arid and semiarid regions of the world. Although in
some cases soil salinity can be controlled effectively by applying sui-
table water management schemes, high soil salinities often are difficult
to prevent because of a lack of good quality irrigation water. In that
case, an effective use of available soil and water resources dictates the
production of agricultural (or other) crops that are relatively tolerant
to high soil salinities. For this purpose, numerous field and laboratory
experiments have been carried out to determine the salt tolerance of
various crops. Results of these experiments are best analyzed in terms of
an appropriate salt tolerance response function.

One popular way to express the relative salt tolerance of crops is by
means of a piecewise linear response function (Maas and Hoffman, 1977).
This function contains two independent parameters: the salinity threshold
(ct), being the maximum salinity without yield reduction as compared to
the yield under nonsaline control conditions, and the slope (s) of the
curve determining the fractional yield decline per unit increase in

salinity beyond the threshold. In mathematical form:

1 0<ec <« ct
Yr =<1 - s(¢c - ct) . < ¢ < <, [1]
0 c>c
)

where Yr is the relative yield, ¢ is the average rootzone salinity during
the growing season, ¢, is the threshold concentration, SR is the concen-

tration beyond which the yield is zero, and s is the absolute value of the
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Figure 1. Graphical representation of the piecewise linear crop salt
tolerance response function (Eq. 2).



to the left and at least three points to the right of the fitted threshold
value. This makes the method less suitable for experiments with a limited
number of data points. In this report we will use a more general non-
linear least squares method. Appendix A gives a detailed description of
the computer program (called "SALT"); the program itself is listed in
Appendix D.

To allow for flexibility in analyzing different types of data sets, 20
different options have been included in the program. These options relate
to the choice of a particular salt tolerance response function (Eq. [2] or
alternative models), and to the type and number of model parameters that
are fitted to the data. The different options are discussed briefly
below. Specific examples are given in the next section.

Table 1 gives a list of the available options. A particular option
in the program is chosen by specifying the input variable NOPT ("Option

Number”, see Table 1). When NOPT = 1, a simple linear regression analysis

of the type

) 1 ¢ [5]

with two unknown parameters (Yo, sl) will be carried out. Application of
this method assumes that an independent estimate for Ym is available, and
hence, that the data already are normalized into relative yield fractions.
It is important to realize that this method can be applied only to data
points that are located between c, and cy (see Eq. 2). Once the regres-
sion based on Eq. [5] is carried out, the salinity threshold and slope can

be calculated with the expressions

e, = (Y, - Ym)/sl [6a]



and
s = s;/Y,. [6b]

When NOPT = 2, it is assumed that both Ym and c, are already known,
thus leaving only the slope s to be calculated from the experimental

data. In this study, s is obtained with the simple equation

n
1(Ym - Yi)/i=l(ci - c.) | (7]

7
it
e~ "

i

where (ci, Y;) represents the i-th data point (1 < i < n), and n is the
number of observed data points used in the analysis. An iterative proce-
dure was built into the program such that only data points between c. and
¢, are considered. As will be shown later, Eq. [7] is especially useful
when other methods based on Eq. [2] lead to salinity threshold values that
are located to the left of the first measured data point (usually the non-
saline coantrol). As an alternative to Eq. [7], least squares techniques
could have been used also to calculate s once Y and c, are known.
Because least squares techniques were found to give relatively more weight
to data points that are far away from the threshold value (i.e., to data
points associated with relatively low yields and high salinity levels),
and because salt tolerance studies generally are concerned more with the
region close to the threshold (i.e., with the higher yield values), it was
decided to use only Eq. [7].

Nonlinear least squares techniques are used whenever NOPT » 3. When
NOPT = 3, the threshold c, is assumed to be known beforehand and only s
and Y are fitted to the data. When NOPT = 4, both cg and s are calcula-

ted (Ym is fixed), whereas for NOPT = 5 all three unknowns (Ym, Cy and s)



different management schemes (e.g., with varying leaching fractions or
irrigation methods). One example of this type is considered in section
3.6.

Although Eq. [2] has been the more popular model for quantifying the
salt tolerance of crops, two alternative formulations are also considered

in this report. One expression is of the form

Y
m

1+ (¢/c

Y =

50)p *
where s is the salinity at which the yield is reduced by 50%, and where
P is an empirical constant. Figure 2 gives a dimensionless plot of Yr
versus C/CSO' Equation [8] is used in the program for NOPT-values that
run from 11 through 17 (see Table 1). As with Eq. [2], choice of a parti-
cular option depends on the number of unknown parameters in Eq. [8], and
on the number of multiple Ym—values available for different years or
treatments. Examples based on Eq. [8] are shown in sections 3.3. and 3.5.
A second alternative salt tolerance model used in the computer
program assumes an exponential relation between the yield and the average

rootzone salinity:
2
Y = Ym exp(ac - Bc*) [9]

where o and B are empirical constants. Figure 3 shows relative salt tole-
rance curves based on this equation, using three different combinations

of « and B. Note that the curve for a > 0 reaches a maximum at some
positive value of the concentration; this maximum is located at ¢ = a/28.
When o = 0, the initial slope of the respouse function is zero, and the

curve is similar in shape to the curves shown in Fig. 2. Response
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functions based on Eq. [9] are used whenever 18 < NOPT < 20 (Table 1). An

example is given in section 3.2.

3. EXAMPLES

This section presents several examples illustrating the type of
results that can be obtained with the optimization method. The examples,
taken from the literature, were chosen such that various program options
are clearly demonstrated. The concentration units for each example are
the same as those used in the original publication. Appendix B lists the
input data that were used in the calculations; computed results for these

same input data are given in Appendix C.

3.1. Tall Fescue

This example considers the salt tolerance of tall fescue (Brown and
Bernstein, 1953). Figure 4 compares two fitted curves with the observed
data. Results for the solid line were obtained with NOPT = 5 (see Table
1), indicating that all three unknowns (ct, s and Ym) in Eq. [2] were
fitted to the data. Note that only one point is located to the left of
the threshold. This shows that the curve could have been calculated also
with NOPT = 4, i.e., by fixing Y, equal to the maximum observed yield and
carrying out a two-parameter fit for c,p and s. However, in general it is
impossible to know beforehand whether or not only one data point appears
to the left of €., and hence it is always better to calculate all three
unknowns simultaneously using NOPT = 5. Because the required computer
time on an IBM 360/91 is in the order of a few seconds (or less), there is
also no reason to limit the number of unknowns in the program by artifi-

cially fixing Ym.
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The dashed line in Fig. 4 is based on a linear regression fit of all
data (NOPT = 1). Using this method and assuming that Y, is equal to the
control yield of the first data point, a drastically different threshold
value is obtained: 2.50 for NOPT = 1 ag compared to 4.53 for NOPT = 5. On
the other hand, if the first data point was deleted from the data set,
linear regression in this case would have generated exactly the same

results as the complete three-parameter fit using NOPT = 5,

3.2. Perennial Rye

Results for the salt tolerance of perennial rye (Brown and Bernstein,
1953), shown in Fig. 5, are very similar to those of the previous example.
Again, only one data point appears to the left of the threshold value,
indicating that NOPT = 4 and NOPT = 5 would have produced exactly the same
results. Also the use of linear regression techniques (NOPT = 1) would
have lead to the same results, again provided that the first data point is
deleted from the data set.

Figure 6 shows results for the same perennial rye data when Eq. [9],
rather than Eq. [2], is fitted to the data. Note that the parameter o was
found to be positive, causing the curve to acquire a maximum at ¢ = a/28
= 2.5 dS/m. Judging from Figs. 5 and 6, the exponential curve failed to
pProduce better results than the piecewise linear model. This conclusion
also follows from a comparison of the sum of the squared deviations of the

observed (Yi) versus the fitted (Yi) yield values (SSQ):

e 2
$8Q = ] (y;- i) [10]
i=1

Nearly identical values of SSQ were obtained for the two models: .0214 for
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the piecewise linear model and .0231 for the exponential model. Hence,
both models are about equally successful in describing the salt tolerance

data of perennial rye.

3.3. Tomato

Figure 7 shows salt tolerance data for tomato (Osawa, 1965). The
dashed line represents the complete three-parameter fit based on Eq. [2]
(NOPT = 5), Note that the threshold concentration appears to the left of
the first data point. This situation leads to a unique (well-defined)
value for the absolute slope (Yms). However, the fitted values of . and
Ym in this case are meaningless since no data points at the lower salinity
values are available to fix these parameters. In fact, different initial
estimates of the coefficients in the nonlinear least squares procedure
would lead to different fitted values for ¢, and s. There are two ways to

t

resolve this problem. One method would be to assume that either c. 1is
known beforehand and equal to the salinity of the first data point, or
that Ym is known and coincides with the yield of that first point, Either
assumption will fix the endpoint of the dashed curve in the upper left
part of Fig. 7. One can accomplish this in the program by using either
NOPT= 3 (ct is fixed) or NOPT = 4 (Ym is fixed), respectively. Unfortu-
nately, this method still results in either a ¥,~value that is less than
the yield associated with the first data point (NOPT = 3), or in a
threshold salinity value that lies to the left of this point (NOPT = 4).
An alternative and more realistic approach would be to fix both Cy
and Ym by their values at the first data point in Fig. 7. In the program

this is accomplished with a one-parameter fit for s based on Eq. [7] (NOPT

= 2). Actually, the program switches automatically from NOPT = 5 to NOPT
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= 2 whenever all observed data points are to the right of the fitted
threshold value. The solid line in Fig. 7 was obtained with NOPT = 2.

Note also that two data points appear to the right of c_, the intersection

o’
between the fitted line and the concentration axis. The program uses an
iterative procedure such that all points to the right of ¢, are automati-
cally discarded from the data set. 1In other words, no data points are
included in the analysis whenever those points produce negative yield
values as calculated with the fitted curve (see the computer output for
this example in Appendix C). |

For illustrative purposes, the same tomato data were analyzed also
with Eq. [8]. Results are presented in Fig. 8. Clearly, Eq. [8] leads to

a much better fit of the data than the piecewise linear response model,

especially at higher salinity levels.

3.4, Grapefruit

Example 4 analyzes the salt tolerance of grapefruit using the same
data as listed in a recent study by Feinerman et al. (1982). The data
first were analyzed with NOPT = 5, i.e., for the three unknown parameters
Ym’ . and s in Eq. 2. Figure 9 compares the fitted curve with the
observed data points, Note that all data are located in the upper left
part of the figure close to the threshold value. Because of a lack of
observed data at the higher soil salinities, both the threshold and the
slope of the curve have extremely large standard errors (see Appendix
C). Actually, this was the only example that exhibited uniqueness pro-
blems during the inversion process. Uniqueness problems become apparent

when different initial estimates in the computer program generate

different values for the fitted parameters. The least squares method is
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based on the principle that the sum of squares (SSQ) of the deviations
between the observed (Y;) and calculated yields (Yi) is minimized (see Eq.
10). In general, SSQ can be viewed as a three~dimensional function of the
unknown parameters Y,» ¢t and s. In some cases, this function may mani-
fest multiple minima to which the inversion method can converge. For

the present example, several minima of SSQ were observed, one of which

was located at P, = (Ym,ct,s)l = (103.95, 7.78, 0.0137), and one at

Py = (Ym,ct,s)z = (102.76, 9.72, 0.0165). Figure 10 shows graphically the
variation of SSQ along a straight line through these two points. Note
that in actuality three minima with nearly identical SSQ's are present.
The fitted line in Fig. 9 uses the parameter values associated with the
lowest S$SQ (P} in Fig. 10). From this figure, it must be clear that in
this case little confidence can be attached to the accuracy of the fitted
values. Example 1 was the only case encountered that exhibited this type
of uniqueness problem. Nevertheless, it is recommended that the least
squares inversion method be carried out with at least two different sets
of initial estimates whenever the observed data are clustered around the
threshold value such as was the case in this example. If the inversion
results obtained with widely different initial estimates are identical,
then it is probably safe to assume that the inversion is unique,

Results obtained here for grapefruit differ slightly from those
obtained by Feinerman et al. (1982). This is because their regression
technique differs somewhat from the nonlinear least squares method used in
this study. In essence, the technique used by Feinerman et al. (1982)
assumes unequal variances for the two line segments on either side of the
threshold salinity, while the least squares technique used here assumes

that the variances for the two lines are the same. For comparison, the
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In general, few uniqueness problems were observed when applying the
nonlinear least squares inversion method. In one example, the observed
data were found to be clustered in a relatively small portion of the
salinity response curve. Data of this type can lead to large standard
errors of the unknown coefficients. It is recommended that salt tolerance
trials be carried out over a relatively broad range of salinity values
with concomitant broad variations in observed crop yields. Such data lead
to a better definition of the response function and produce smaller

standard errors of the coefficients.
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values of KNOB, NOPT, KBI and KB. If KNOB is positive, its value equals
NOB, the number of observed data points. However, when KNOB is negative
(or zero), the remaining information of that particular example still is
read in, but the example is not executed. This feature allows one to set
up a large file of observed data without having to execute again every
case whenever some of the input parameters (e.g, NOPT) are modified. The
input parameter KBI indicates whether new names of the unknown coeffici-
ents are read in for the example in question. For the first example
(NCASE = 1), a card with the appropriate coefficient names must always be
supplied. However, when NCASE > 1, the card with the coefficient names
can be skipped if so desired. This is done by setting KBI = 0 (card 3,
Table A2). 1In that case, the coefficient names of the previous example
will be used. Finally, the input parameter KB specifies whether the
initial estimates B(I) are specified in the input file (KB = 1), or are
generated internally in the program (KB = 0). The option KB = 0 can be
used only in connection with the piecewise linear response model (Eq. 2)
and for NOPT < 5. For all other NOPT-values, KB must be set equal to one,
indicating than initial estimates of the various coefficients will be read
in from the data file.

The fourth data card (Table A3) specifies the coefficient names and,
as mentioned above, is needed only when either NCASE = 1 or KBI = 1 (or
both). For NOPT < 10, the first three coefficient names relate to the
slope (s), the salinity threshold (ct) and the control yield (Ym or Y; ),
respectively. For 11 < NOPT < 17, the first three coefficient names are
related to Cg0» P and Yﬁ, in that order. When NOPT = 18 or 19, the
coefficient names are related to a, B and Ym, again in that order. Final-

ly, when NOPT = 20, the coefficient names are associated with 8 and Yﬁ,
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whether they are generated internally in the program (NB =
0). NB is set to one in the program for all NOPT-values
exceeding 10.

Input parameter indicating whether the coefficient names are
given in the input file (NBI = 1) or whether they are
assumed to be the same as for the previous example. NBI is
set to one in the program for all NOPT-values exceeding 10.
Number of cases to be executed.

Iteration number during least squares analysis.

Number of data points (equal to the absolute value of KNOB),

Option number indicating the type of response model and the
number of unknown coefficients in that model (see Table .

Number of unknown coefficients; generated internally as a
function of the input parameter NOPT.

Vector used to generate the value of NP as a function of NOPT.
Assumed or fitted value of the slope.

Calculated correlation coefficient for the linear fit (NOPT
= 1).

Value of the relative slope, s (NOPT = 1,2).
Residual sum of squares.

Standard error of the fitted value of Y, in Eq. [5] (NOPT

.

Standard error of the fitted value of sy in Eq. [5] (NOPT 1).

Stop criterion. The iterative curve-fitting process is
terminated when the relative change in the ratio of all
coefficients becomes less than STOPCR. The value of STOPCR
is arbitrarily set at .00001.

Vector containing the information of the title card (input
label),

Vector of observed yields.
Maximum of observed yields.
Minimum of observed yields.

Calculated value of Yo‘




7. APPENDIX B.

-33-

Listing of Input Data

Column:
Card

3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2

6
EXAMPLE 1:
8 1 1 0

SLOPE THRESH

0.8 .508
6.1 .397
7.3 .470
8.3 .380
10.9 248
11.4 .293
12.5 .238
13.7 157
EXAMPLE 2:
8 2 0 0
0.8 467
6.1 .496
7.3 .433
8.3 .245
10.9 317
11.4 .293
12.5 .208
13.7 .179
EXAMPLE 3:
6 3 0 0
2.1 2.133
3.9 1,557
5.6 1,557
9.1 917
15.8 .384
28.0 .085
EXAMPLE 4:
19 5 0 0
5.069 100.7
5.469 100.4
5.476 107.4
6.410 107.3
7.980 103.9
8.306 100.2
9.346 99.4
10.325 103.0
10.358 101.9
11,381 101.7
11.467 100.7
12,414 93.1
13.411 93.8
14.399 97.8
14,461 90.3
16,172 94,6
16.457 92.6
17,346 94,8
19.822 81.9

TALL FESCUE  (CRS3)

™

PERENNIAL RYE (CR53)

TOMATO (0SAWA, 1965)

GRAPEFRUIT (FEINERMAN ET AL., 1982)
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8. APPENDIX C. Listing of Computer Output

» . »
* LEAST SQUARES ANALYSIS OF SALINITY RESPONSE CURVE SALT *
* »
* EXAMPLE 1: TALL FESCUE {CRS3) *
- NOPT = 13 NP = 2 ®
* »
]

!!!ﬁ*!*!*********!K*&*&ii****!******ﬁﬁﬁ*§***ﬁ!**********!***!****!!*ﬁ*&!**&**ﬁi!*

LINEAR REGRESSIOUN RESULTS FOR Y=YZERO-SLOFEXC

===

YZERQ = 0.5752 WITH STANDARD ERRCR OF 0.0447
SLOPE = 0.0249 WITH STANDARD ERROR 0OF 0.0046
CORRELATION COEFFICIENT = 0.9222

CONTROL YIELD (YM) = 0.5080
THRESHOLD (CT) = 2.4933

SLOPE FOR ORIGINAL DATA (S®YM) = 0.024915

SLOPE FOR RELATIVE YIELD DATA (S) = 0,052933
INTERSECTION AT ZERO SALINITY (YZER(O) = 0.57525
SALINITY EXTRAPOLATED T ZERQO YIELD (CZERM)= 21.37256

CONC Y-FITTED DEVIATION REL. YIELD INDEX
0.:3000 0.5527 -0.0457 1.0000 1
6.1000 0.4111 -0.0141 0.7815 1
7.2000 0.4700 0.3733 0.0912 0.9252 1
8. 3000 0.3800 0.3519 0.0231 0.7480 1

10.%000 0.24i30 0.2819 -0.03327 0. 4232 1
11.4000 0.2930 0.2424 0.0248¢é 0.57¢2 1
12,5000 0.2380 0.2333 =0.0008 0.44585 1
13.7000 0.13570 0.2085 ~0.0495 0.307%1 1
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................. O 0036 e 0230000 3 3638 3¢ 98 TS0 200 0L 02023200 000626 000056 3
* *
» LEAST SQUARES ANALYSIS COF SALINITY RESPONSE CURVE SALT »
* *
* EXAMPLE 2: TOMATO (0SAWA, 1945) *
* NOPT = 3 NP = 2 *
» *
!!!!*!!i**!*ii*!!**ﬁ**i*i*i***!*‘§“§":“:'“ B0 0 0 N0 D0 N N
NIT SER SLOPE YM THRESH

o] 2.78435 0.03707 2.0%028 7.00000

1 0.23345 0.04793 1.53812 7. 00000

2 0.435183 0. 095359 1.4450%  7.00000

3 0.43242 0.09283 1.484422 7. 00000

4 0.43242 0.09330 1.44623 7+ 00600

S 0.42342 0. 07330 1.64623 7.00000

CORRELATICON MATRIX

1
1 1.0000

2 0.18s8 1.0000

95% CONFIDENCE LIMITS

VARIABLE VALUE S.E.COEFF T-VALUE LOWER UPPER
SLOPE 0.0%3300 0.02249 4.17¢ 0.0313 0.1583
Y™ 1.444223 0.17477 9.420 1.1610 2.1314

SLOPE FOR ORIGINAL DATA (SxyM) = 0.153414

SLOPE FOR RELATIVE YIELD DATA (5) = 0. 093200
INTERZECTION AT 2ERD SALINITY (YZERQ) = 3.44285
SALINITY EXTRAPGLATED TO ZERG YIELD (CZERO)= 17.66096

CONC Y-0B3 Y-FITTED DEVIATION REL YIELD INDEX
2. 1000 2.1330 1.6442 0.43583 1.2957 1
3. 7000 1.3570 1.6462 =0.02%2 Q.9453 1
S.&000 1.5570 1.£462 =Q. 0292 0.7453 1
9.1000 C.9170 1.3220 -0.4050 0.5570 1

15.2000 0.3240 0.2374 0.0%7548 0.2333 1
28.0000 0.0850 0.0 0.0350 0.0514 1
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*

» LEAST SAUARES ANALYSIS OF SALINITY REZPONZE CLURVE

*

* EXAMPLE 5: BROME GRAZS (MCELGLNN AND LAWRENCE, 1973)
* NOPT = 12; NP = 3

»

k3

NIT 8% CSo P-EXF
o] 0.31535 135.00000 2. 00000
1 0.11202 18.45212 2.77748
2 0.01553 13.31549 4.13246
3 0.00212 16.13985 4.42485
4 0.00307 154.13%74 4.53310
S 0.00207 14.14027 4.53221
4 0.00207 16.14027 4.53221

CORRELATION MATRIX
1 2 3
1 1.0000
2 0.5217 1.0000
3 ~0.6%93 -0.5295 1.Q000
VARIABILE VALLE S.E.CNEFF
cS0 14.140274 0.1207%
P-EXP 4.332212 0.12099
YM ¢, 9280259 0.00854
CONC: Y-0BS Y~FITTED
4.0000 1. 0000 0.7724
S. 9000 0.9700 0.9702
7.9000 Q. 9300 0.9433
9. 8500 0.8700 0. 8359

11.3000 0.7%00 0.73%3

13.8000 0.6700 0.68572

15,7500 0.5100 0.5173

17.7500 0.3800 0. 2262

19.7000 0.2900 0.2327

21,4500 0.2100 0.2049

23. 4500 0. 1400 0.1474

25, 4000 0.1200 0.107%

27.5000 0.03200 0.0204

29.5000 0. 0500 0.0598

31.5000 0.0300 0.0452

33. 5000 0. 0200 0.024¢

35. 5000 0.0100 0.0253

37.5000 0. 0000 0.0210

39.3000 0.0000 0.0147

YM
1. 00000
0.87022
0. 713743
0.97950
0.920:35
0.920324
0.920348
957% CONFIDENCE LIMITS
T-VALLE LIWER FFER
1232.408 15. 8620 14.4175
37.45% 4.2757 4,7237
112.499 0.9620 0.9%87
DEVIATION REL YIELD INDEX
0.0214 1.0200 1
=0.0002 0.98?74 1
-0.0133 0.9434 1
~0.0159 0.8274 1
Q0.0005 0.3053 1
0.0123 0. 4224 1
~0.0073 0.5202 1
~0, 0042 0.2876 1
0.0073 0.2953 1
0.0051 0.2142 1
0.0124 0. 1422 1
0.0121 0.1224 1
-0.0004 0.0314 1
-0.0092 0.0510 1
-0.0152 0. 0208 1
-0.014¢ 0. 0204 1
~0.01483 0.0102 1
~0.0210 0. 0000 1
=0.0147 1

0.0000
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9. Listing of Computer Program

x

3 NON-LINEAR LEAST-SOUARES ANALYSIS SALT
# OF SALINITY-RESPONSE CURVES
»
=
»

JANUARY 20, 1933

QOO0 O00000

DIMENSION C(SO),Y(SO),F(50),R(50),DELZ(50,8),B(8),E(8),TH(8),P(E)
1,PHI(3),&(3),TB(B),A(3,3),BI(32),0(8,8),TITLE(20),IND(SO),NPA(13)
DATA MIT/QO/,STUPCR/0.0000I/,NPA/Q,1,2,2,3,4,5,6,7,8,“ 2,2/

Sy lty &

(o Ne]

-—--- READ NUMEER OF CASES ————n
READ(S, 1002) NC
DD 120 NCASE=1,NC

00

———== READ TITLE AND INPUT PARAMETERS ————-
READ(S, 1000) TITLE

READ (S, 1002) KNOE,NGFT,KBI, KE
IF(NOPT.GE.12) KBI=1

IF(NOPT.GE. 11) KE=1

I=NOPT

IF(1.GT.10) I=I-7

NF=NPA (1)

IF (KNOE. GT.0) WRITE(4, 1002) TITLE,NOPT, NP
NOB=IABS (KNOB)

00

————— READ INITIAL ESTIMATES ————-

IF (NCASE.EM. 1. OR.KEL.EQ. 1) READ(S, 1004) (BI(1),I=17,32)
IF(KE.ERQ. 1) READ(S, 1002) (B(I),I=1,8)

CMAX=0.0

CMIN=10000.0

YMAX=0,0

YMIN=10000.0

(oMo

————— READ INPUT DATA —————
DO 2 1=1,NOB
READ (S, 1010) C(I),Y(1),IND(I)
IF(NP.LE.2) IND(I)=1
CMIN=AMIN1 (CMIN,C(I))
YMIN=AMINI (YMIN, Y (1))
IF(Y(1),LT.0.001) GO TO 2
CMAX=AMAX1 (CMAX, (1))

2 YMAX=AMAX1 (YMAX,Y(I))
IF (KNDOR.LT.0) GO TQ 120



18

43—

MAIN

Do 16 I=1,NOR
EA=ZA+Y (1 )-YM
SE=SB+C(I1)-CT
SlLOPE=-SA/3B
SREL=SLOPE/YM
YZERO=YM+3ILOFESCT
CZERO=CT+YM/SLOFE
WRITE(5,1014) YM,CT
WRITE (£, 1034) SLOPE, SREL, YZERD, CZERO
TH(S)=YM

Do 18 I=1,NOE
FAI)=YM-SLOPE= (C(1)-CT)
ROI=Y(I)-F (1)

IR=0

DO 20 I=1,NOE
IF(F(I).GE.O.) GO TO 20
IR=1

C(Iy=CT

Y (1)=YM

CONTINUE

IF{IR.GT.0) GD TO 14
GO TO 109

————— NONL INEAR LEAST-SQUARES ANALYSIS -—-—-
IF(KB.EQ. 1) GO TO 26
B(1)=(1.-YMIN/YMAX)/ (CMAX~-CMIN)
R(2)=AMAXL (1, 1=CMIN, 0.25=CMAX)
Do 24 1=3,%

BA(1)=0, ¥3#YMAX
IF(NOPT.E®. 4. OR.NOPT.EQ. 11) B(3)=Y(1)
IF=MAXO (NP, 3)

IF(NOPT.EQ.22) IP=2

NP2=2=NpP

IP2=2=1IP

0o 28 1=1,14

BI(I)=RBI(I+14)

NT=0

B1=B(1)

B2=E(2)

E3=B(3)

IF(NOPT.NE.3) 530 TQ 30

B2=R(3)

B(3)=B(2)

B(2)=R2

BI(2)=BI(21)

BI(4)=EI(22)

BI(S)=BI (1%

BI(&)=E1(20)



&4
&4

72

74
75

82

83

g4

45—

MAIN

DO &2 I=1,NP
IFCTHCLISTE(L) ) &4,488, 52
CIONT INLE

SUME=0

CALL MODEL(TE,F,NOE,C, IND, NOPT)
0D 24 I=1,NOE
R(I)=Y(I)-F(I)
SIUME=SUME+R (1) =R(I)
SUM1=0,0

SIM2=0.0

SLIMZ=0.0

DO &2 I=1,NP

SUMI=SIML+P (I)=PHI (I
SUM2=SIUM2+P (1 )=P (1)
SUMI=SUMZ+PHI (1 )=#PHI (1)
ANGLE=2%, Y5957, 299725ATAN (SUM1/S0RT (SUMZ=SUM3-SUM1 #52 ) )
Do 72 I=1,NP
IF(TH(I)=TE(1)) 74,74,72
CONTINUE

IF (ZuUMB/320-1.0) 80,550,743
IF (ANGLE-30.0) 76,74,78
STEF=0.SsSTEP

GO TG Sé&

GA=10, =5A

GO TO S0

————— PRINT COEFFICIENTS AFTER EACH ITERATION ———--—
CONTINUE

Do 22 I=1,NP

TH(D)=TEA(I)

WRITE(&4,1018) NIT,SUMB, (TH(1),I=1,1IF)
IF(NOPT.GT.10.ANDLNDPT,.LT.12) GO TO 23
IF (NOPT.ER. 3. OR.NOFT.EQ. 20) GO TO 88
IF(NOPT.LT.11) 30 TO 35S
IF(ABS(TH(I)).GT.1.0E-04) GO TO 88
IF(NT.EQ.1) GO TG 33

NT=1

B{(1)=-B1

B(2)=B2

B(2)=B3

GO TO 20

B{1)=B(2)

B(2)=B(3)

Do 24 1=1,4

BI(I)=BI(1+2)

NOPT=20

NP=2

WRITE(1,1020)
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MAIN

IF(NOFPT.ER.3) SLOPE=TH(1)=TH(2)
YZERO=TH(2)x (1. +TH(1)=TH(2))
IF(NOPT.EG. 2) YZERO=B(2)={(1.+TH(1)=TH(3))
CZERD=TH(2)+1./TH(1)

IF(NOPT.ER. 3) CZERO=TH(3)+1./TH(1)
WRITE (4, 10324) SLOPE, TH(1),YZEROD, CZERC

————— PREPARE FINAL QUTPUT --—--
107 WRITE (5, 1035)
00 118 I=1,NOB
K=2+IND(])
IF(NOPT.E&. 2. OR.NOPT.EQL. 20) K=2
RY=Y (1)/TH ()
WRITE(4,1033) C(1),¥Y(I),F(I),R(I),RY, IND(I)
113 CONTINUE
119 IF(NOPT.NE.S) GO TO 120
IF(TH(2).GT.CMIN) 58 TO 120
WRITE (&,1024)
NF=1
GO TO 10
120 CONTINUE

————— END OF PROBLEM -——--

1000 FORMAT (20A4)

1002 FURMAT (&15)

1003 FORMAT (1H1, 10X, 82 (1H%) /11X, 1H%, 80X, 1H»/11X, 1H®, 10X, "LEAST SRUIARES
1ANALYSIS OF SALINITY RESPUNSE CURVEZ, 11X, “SALT”,4X, 1H=/11X, 1H=, 20X
2, 1H=/11X, 1H%, 20A4, 1H=/11X, 1H=®, 10X, “"NOPT =/,13,7: NP =7,13,52X, tH=/
311X, 1H%, 20X, tH%/11X,32(1H%))

1004 FORMAT (S(A4,A2,4X))

1008 FORMAT (3F10.0)

1010 FUORMAT(2F10.0,110)

1012 FORMAT (//11X, LINEAR REGCRESSION RESULTS FOR Y=YZERO-SLOPE=C- /11X, 4
15(1H=)//11X,7YZERG =",F10.4,” WITH STANDARD ERROR 0OF7,F10.4/11X,”S
2LOPE =/,F10.4,° WITH STANDARD ERROR OF,F10.4/11X, CORRELATION COE
SFFICIENT =7,F10.4)

1014 FORMAT(//11X,”CONTROL YIELD (YM) =7,F10.4/11X,THRESHOLD (CT) =",F
110.4)

1015 FORMAT(///11%X,°NIT”,8%, S50 ,3X,10(4X,A4,A2))

1018 FORMAT (10X, I3,F12.5,1X,10F10.3)

1020 FORMAT (//11X,7ALPHA IS TOO SMALL, NEW NOPT =207/11X,32{(iH=))

1022 FORMAT(//11X,” THRESHOLD I3 TOO SMALL, USE ANOTHER NOPT /11X, 40(1H=
1))

1024 FORMAT(//11X,“CHANGED TO OPTION NUMEER 27)

1025 FORMAT(//711X, "WARNING: THRESHOLD IS LES3 THAN CMIN, USE ANOTHER NO
1PT7/711X,55(1H=))

1026 FORMAT (//13X,”CORRELATION MATRIX” /13X, 18(1H=)/11X,10(3%,12,4X))

1022 FORMAT(9X,14,10(1X,F7.4,1X))
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MODEL
SUBROUTINE MODEL (B, Y, NCOB, C, IND, NOFT)
PURFOSE: TO CALCULATE Y(C)
DIMENZION E(3),Y(50),C(50), IND(S0)

IF(NOPT.GT.10) GII TO 10
B2=R(2)

IF(NDPT.EG.3) B2=E(3)
IF(NOPT.ER.3) EB3=E(Z)

DO 2 I=1,NOB
IF(NOFT.NE.3) B3=E(2+IND(I))
IF(C(I)-B2) 4,4,¢
Y{I)=E3

GO 7o &
Y{(1)=E3-B(1)#R2%(C(])-B2)
Y (I)=AMAX1(Y(I),0,)

CONT INUE

RETURN

IF(NOPT.GT.17) GJ TO 14
00 12 I=1,NOB

Y(I)=B(2+IND(I) )/ (1. +(C(I)/B(1))==B(2))

RETURN

IF (NOPT.ER.20) GO TO 18
00 15 I=1,NIB
YAD)I=E(3)=EXP (B(1)%C(1)-B(2)=C (I )==2)
RETURN

Do 20 I=1,NOB
Y(I)=B(LIREXF(-B(1)®C (1 )==2)
RETURN

END



