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Abstract 

Soil water flow models are based on simplified assumptions about the mechanisms, processes, 

and parameters of water retention and flow. That causes errors in soil water flow model 

predictions. Data assimilation (DA) with the ensemble Kalman filter (EnKF) corrects modeling 

results based on measured state variables, information on uncertainty in measurement results and 

uncertainty in modeling results. The purpose of this manual is to describe the application of DA 

with EnKF into soil water flow modeling to improve simulation results. The DA with EnKF code 

was developed to assimilate the data of soil water content measurements at one or more depths 

with the ensemble of models (e.g., pedotransfer functions (PTFs) for water retention function and 

saturated hydraulic conductivity (Ksat) in soil water flow modeling). The DA with EnKF code 

written in FORTRAN was coupled with HYDRUS-1D code as soil water flow modeling tools. 

The manual describes the DA with EnKF theory, the soil water flow model, and contains 

detailed instructions for input and output data, and sample problems.     

 

Disclaimer 

Although the code has been tested by its developers, no warranty, expressed or implied, is made 

as to the accuracy and functioning of the program modifications and related program material, 

nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed 

by the developers in connection therewith. 
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1. Introduction 

 A large number of soil water flow and storage models have been developed for 

applications in hydrology, meteorology, agronomy, contaminant hydrology, and other fields.  

Each of these models is based on a set of simplified assumptions about the mechanisms, 

processes, and parameters of water retention and flow, and it is often not possible to predict 

whether a particular set of assumptions will be applicable for a specific site. Therefore, errors in 

soil water modeling predictions arise that result from both conceptual uncertainty and the lack of 

detailed knowledge about model parameters. 

 Using monitoring data to periodically correct modeling results is a way to reduce 

modeling errors. The correction consists in updating simulated values, i.e. replacing simulated 

values of environmental variables with values that are closer to the measured ones. This 

operation is called data assimilation (DA). It has become a common approach in modeling 

atmospheric and oceanic systems (Lahoz et al., 2010)  

 The simplest way of data assimilation is the direct insertion of the measured values of 

state variables in place of simulated ones. Although this DA method has been applied from time 

to time (Houser et al., 1998; Walker et al., 2001a,b; Heatman et al., 2003), it has been recognized 

that DA-based correction of modeling results should use information on uncertainty in data and 

uncertainty in modeling results.  Simulated values should be changed to the values very close to 

measured ones if the uncertainty in data is much less than the uncertainty in modeling results. On 

the other hand, there is no reason to substantially change simulated values if the uncertainty in 

modeling results is much less than the uncertainty in data. This concept has been formalized by 

applying the statistical technique called Kalman filter which is a proven data assimilation method 

for linear dynamics and measurement processes with Gaussian error statistics (Kalman, 1960). 

This technique has been applied from the very beginning of data assimilation in soil moisture 

modeling (Aboitiz et al., 1986; Or and Hanks, 1992). As the data assimilation for nonlinear 

models became of interest, the ensemble Kalman filter (EnKF) was proposed by Evensen (1994) 

to overcome limitations of Kalman filter.  The EnKF is a sequential data assimilation method, 

which uses an ensemble of model states to represent the error statistics of the model estimation.  

The idea is to start an ensemble of (many) simulations by varying model parameters, initial state 

variables, and forcing within feasible ranges. The variation in modeling results within the 

ensemble at the time of state variable update is used to define the uncertainty in modeling results. 
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Vereecken et al. (2008) noted that the conceptual simplicity, relative ease of implementation, and 

computational efficiency of the EnKF make the method an attractive option for data assimilation 

in vadose zone hydrology. The EnKF has been proven to be an efficient approach to correct 

Richards equation-based soil flow modeling results of soil water contents by assimilating surface 

soil moisture (Das and Mohanty, 2006). 

Selection of the ensemble of models can strongly affect the efficiency of data 

assimilation with EnKF. It was recently proposed to build an ensemble of soil water flow 

simulations using an ensemble of pedotransfer functions, or PTFs (Guber et al., 2005, 2008, 

2009). The argument went that the accuracy of PTF outside the data collection region is 

essentially unknown, and the ensemble forecasts offer a way of filtering the predictable from the 

unpredictable through averaging – the features that are consistent among ensemble members are 

preserved, while those that are inconsistent are reduced in amplitude. Perhaps more important, 

the ensemble itself, as a sample from possible forecast outcomes, can be used to estimate the 

forecast uncertainty and the likely structure of forecast errors (Hamill et al., 2003). Pedotransfer 

functions were used to adjust the spatial distribution of soil texture and hydraulic properties to 

match simulated and measured soil moisture when the direct insertion of remotely sensed surface 

soil water content was used as the data assimilation method (Santanello et al., 2007). However, 

pedotransfer functions have not been so far used in soil water sensor data assimilation. 

 The purpose of this manual is to describe the application of coupled DA and EnKF with 

PTFs as ensemble into soil water flow modeling to improve simulation results. The DA with 

EnKF code was developed to assimilate the data of soil water content measurements at one or 

more depths with the ensemble of models (e.g., pedotransfer functions (PTFs) for water retention 

function and saturated hydraulic conductivity (Ksat) in soil water flow modeling). The DA with 

EnKF code written in FORTRAN was coupled with HYDRUS-1D code as soil water flow 

modeling tools. This manual describes the DA with EnKF theory, the soil water flow model, 

detailed instructions for input and output data, and sample problems.     

2. Theory  

2.1. Ensemble Kalman Filter  

The Kalman Filter is an implementation of the Bayesian update method. Given a 

probability density function (pdf) of the state of the modeled system (the prior) and the 
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probability distribution function of data, the Bayes theorem is used to obtain the PDF after the 

data has been taken into account (the posterior). The Bayesian update incorporates new data 

when they become available, and model advances in time from one update to another. The 

following description is based on the work of Mandell (2007). 

The Kalman filter relies on the normal distributions of data and modeling results. Let the 

model for any simulated time generate N state variables x1,x2,… xn.,  The probability distribution 

function p(x) of the vector of simulation results  x={ x1,x2,… xn.} is  

      (1)  

where μ is the vector of mean values of variables x1, x2,, xn, Q is the covariance matrix, A1 as 

well as A2,  A3, and A4 in equations below, are scaling multipliers to have the integral of 

probability distribution function equal to one. The function p(x) is the prior probability 

distribution on the moment the state has to be updated to account for data. The vector of data 

values d is also assumed to be normally distributed with the mean and covariance matrix R. It 

is assumed that the mean data vector  is related to state variables x via matrix H as . 

The value Hx is what the value of the data would be for the state x in the absence of data errors. 

Then the probability density p(d|x) of the data d conditional of the system state x, is 

     (2) 

For the update purposes, one needs the probability density of states conditioned on data  

rather than the probability density of data conditioned on states . The conversion of 

  to  can be done using the Bayes theorem  

        (3) 

States conditioned on data, i.e. x|d, are posterior states, they are referred below as xp.  When (1) 

and (2) are used to compute the right-hand side of (3), the expression for p(xp) is obtained in the 

form: 

     (4) 

The posterior mean μp and posterior covariance Qp in Eq. (4) are given by the Kalman update 

formulas: 
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         (5) 

where 

        (6) 

is the Kalman update matrix. The Kalman update changes state variables taking into account (a) 

data available at the moment when predictions have been obtained, (b) the accuracy of those 

data, and (c) variability of state variables. One important feature of the Kalman filter is that the 

number of elements (measurements) in the data vector d is usually much smaller than the 

number of state variables – elements of the vector x. 

The ensemble Kalman filter (EnKF) has been developed to overcome the difficulty of 

using the original Kalman filter in cases when the dependence of the covariance matrix Q on 

time is difficult to find. The EnKF estimates the covariance matrix as the sample covariance 

computed from the ensemble simulation results. The ensemble is composed from randomly 

generated equiprobable realizations of the studied model. The randomness may apply to initial 

conditions, model parameters, and boundary conditions or forcing. 

Let the ensemble consists of N models and each model predicts n state variables. Let the 

predictions of the ith model form the vector xi that has n elements xi, i=1,2,…n, which are 

predicted values of state variables.  The n x N matrix   is the prior ensemble. 

The goal is to correct the predictions at each of preset update times by changing this matrix to the 

posterior ensemble . It is assumed that the data form the vector d that has m 

elements. The vector ε is the random error in data characterized by the m x m error covariance 

matrix R.  

 The ensemble Kalman filter (or EnKF) update consists of four basic steps. 

1. Find the n x N covariance matrix C of ensemble predictions xi 

2. Generate representative random data separately for each ensemble member: d1=d+ε1, d2=d+ε2, 

…, dN=d+εN, where the random vector ε belongs to the n-dimensional normal distribution 

N(0,R). 

3. Collect the random data in the m x N matrix D=[d1,d2,…dN] 

4. Find the corrected predictions as: 

                                                    Xp=X+K(D-Hx)                       (7) 
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where the Kalman gain matrix K relates the variability in predictions and the data accuracy and 

is estimated as 

                                                K= CHT(HCHT+R)-1                        (8) 

The one-dimensional case gives a general feel of how the ensemble Kalman filter works. 

Consider the case n=1 and m=1 when there is only one model-predicted state variable and its 

value is measured. All matrices then will become scalars, and H will be equal to 1. Let xi=μ+ξi, 

ξi belongs to N(0, ), and di=d+εi, εi belongs to N(0, ). The gain K will be 

                                                                                        (9) 

and  

                                                                    (10) 

Values of K are between 0 and 1. The value of is close to when K is close to zero, i.e. 

 and accuracy in data is much lower compared with the variability in predictions. On 

the contrary, the value of  is close to di when K is close to one, i.e.  and accuracy in 

data is much higher than the variability in predictions. 

2.2. Soil Water Flow Model 

 The one-dimensional vertical soil water flow was simulated with the Richards equation  

                                                                                               (11) 

where: is the soil water content [L3 L-3]; is the matric potential [L]; is the hydraulic 

conductivity [L T-1]; is the vertical axis directed upward [L]; is the time [T]. Soil water 

retention was described using the van Genuchten equation (van Genuchten, 1980): 

                                                                                                (12) 

where: , are saturated and residual soil water content [L3 L-3]; [L-1], are van 

Genuchten water retention parameters. The hydraulic conductivity was computed from the van 

Genuchten-Mualem equation (van Genuchten, 1980): 
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                                                               (13) 

where: is saturated hydraulic conductivity [L T-1], is an empirical shape-defining 

parameter. The value of the parameter m was set to 1-1/n.  

 Equation 11 was solved numerically using the HYDRUS 1D numerical procedures 

(Šimůnek et al., 2008).  

2.3. Pedotransfer Functions to Develop the Ensemble of Models 

 Pedotransfer functions developed from large databases were used to generate parameters 

in the van Genuchten-Mualem parameterization of soil hydraulic properties in variably saturated 

soils (Eqs.12 and 13). Parameters of the water retention function (Eq.12) could be found from 

any functions (e.g., Table 1 of Guber and Pachepsky, 2010). Several sets of Ksat values could be 

used to create ensembles of models (e.g., statistical values of Ksat; Rawls et al., 1998; Schaap and 

Leij, 1998; Carsel and Parrish, 1998; Wösten et al., 1999 etc.). The ensemble of many models 

(number of water retention PTFs × number of Ksat PTFs) is applied in soil moisture data 

assimilation with EnKF.  

2.4. Temporal Stability of Water Contents and Data Bias Estimates 

 The random error in data has to be characterized to apply the Kalman update method. 

Because the time series at the same depths were correlated, the ‘naive’ computation of the 

covariance matrix of data errors D under the assumption of independence of data in different 

locations at the same depth could result in large inaccuracies (Wigley et al., 1984) since 

correlated observations result in inflated type 1 errors (Quinn and Keough, 2002). Therefore, the 

statistical model of the data was assumed in the form (Jacques et al., 2001): 

                                           jijiiji btt ,,, )()( ηµθ ++=                                  (14) 

where i is the subscript to denote depth, i=15, 35, 55, 75, 95 cm, j is the subscript to denote 

location across the trench, j=1,2,…,12, μi is the average water content at the depth “i”, bi,j is the 

bias of the measurement in location j at the depth “i” relative to the average water content at this 

depth, and ηij is the random component that is used to define the covariance matrix.  
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2.5. Interpolation of Assimilation Results in Soil Profile 

One specific feature of the assimilation algorithm in this work is that assimilation is performed 

for the small number of depths rather than for each depth of the finite element grid covering the 

soil profile. Results of data assimilation are then interpolated across the soil profile assuming 

linear dependences of logarithms of pressure heads on depths between interpolation points. The 

top and the bottom pressure heads obtained from simulations are preserved to perform the linear 

interpolation outside of the range of measurement depths at all assimilation times.  The 

assimilation depths set includes the measurement depths set. 

The initial water contents for simulations are set at assimilation depths. The initial distribution of 

water contents across profile is constructed by linear interpolation between the initial water 

content depths and linear extrapolation outside of the range of initial water content depths. 
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3. Data Assimilation Code 

3.1. Source Files and Executable 
 
The version 6.0 of the HYDRUS1D code (Simulnek et al., 1998), called HYDRUS6 below, has 
been used in this work.  
 
The source code files are listed in the Table 3.1 below. 
 
Table 3.1. Source files of the SSSA code. 
File name Description 
DA_SSDA.for Data assimilation routine based on the Ensemble Kalman filter 
INPUT.FOR HYDRUS6 data input routines 
MATERIAL.FOR HYDRUS6 data input routines 
OUTPUT.FOR HYDRUS6 output routines 
SINK.FOR HYDRUS6 sink term computation routine 
SOLUTE.FOR HYDRUS6 solute transport routine 
SSDA.FOR Main program including HYDRUS6 converted to the subroutine. 
TEMPER.FOR HYDRUS6 heat transport routine 
TIME.FOR HYDRUS6 simulation time step control routines 
WATFLOW.FOR HYDRUS6 water flow routine 
w_to_h.for Initial water content interpolation routine  
w_to_h_b.for Water content interpolation after data the assimilation update 
  
 
The executable files are ‘SSDA64.exe’ and ‘SSDA32.exe’ for 64 bit and 32 bit Windows 

systems, respectively. 

The ‘datadir.txt’ file has to be in the same directory as an executable. It contains the path to the 

directory where input and output files are to be found. 

 

3.2. Input Files  

 

Input file ‘Input.dat’ includes names of the following input files: 

- observation data for each of measurement depths 

- temporal stability-based sensor bias values for each location and depth 

- initial water contents at all data assimilation depths 

- initial water contents at all data assimilation depths 

- template to build the HYDRUS6 input file ‘Profile.dat’ 
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- template to build the HYDRUS6 input file ‘Atmosph.in’ 

- template to build the HYDRUS6 input file ‘Selector.in’ 

 

Content of each of above files is detailed below in Tables 3.2-3.8. All input files are in ASCII 

format. Note that descriptions of the three templates are available in HYDRUS 1D manuals and 

included in this manual for the convenience. 

The data assimilation code SSDA uses HYDRUS6 to simulate 1D water flow in soil profile. The 

proper work of SSDA was tested only for atmospheric top boundary conditions and either free 

drainage or constant head bottom boundary conditions in absence of root activity. HYDRUS6 is 

capable to simulate much wider variety of boundary conditions and sink terms, as well as solute 

and heat transport. We have not tested these capabilities in data assimilation projects, although 

this is undoubtedly possible. SSDA uses unmodified input files of HYDRUS6 where input of 

variables referring to all capabilities of HYDRUS6 is preserved. Dummy variables are used in 

SSDA to provide inputs that HYDRUS6 requires but does not use in SSDA applications.  

 

Table 3.2 ‘Input.dat’ file content 
 
Item # Line # Variable Description 

1 1 Title Title and comments 
2 2 Comment line   
3 3 ntobs Total number of measurement times  in 

observed water content time-series 
4 3 ndepth Total number of assimilation depths 
5 3 nsensor Total number of water content sensors at 

measurement depths 
6 3 nmat Total number of materials in the profile 
7 4 Comment line   
8 5 Depths(i) (i=1,ndepth) Depths where data assimilation occurs 
9  6 Comment line   

10  7 ipick(i), i=1,ndepth Data availability indicator: if larger than 
zero, then measurements are available at 
the depth ‘i‘ 

11  8 Comment line   
12  From 9 to 

8+NMD 
Filenames of 
measurements for each 
depth where 
measurements are 
available 

File names for water content time series 
data, total of NMD files where NMD is 
the number of measurement depths, i.e. 
the total number of positive values in the 
ipick array. 
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Table 3.2. (Continued) 
Item # Line # Variable Description 

13  9+NMD Comment line   
14  10+NMD Filename Name of the temporal stability bias file 
15  11+NMD Comment line   
16  12+NMD Filename Template to build the HYDRUS6 input 

file ‘Profile.dat’ 
17  13+NMD Filename Template to build the HYDRUS6 input 

file ‘Atmosph.in’ 
18  14+NMD Filename Template to build the HYDRUS6 input 

file ‘Selector.in’ 
19  15+NMD Comment line   
20  16+NMD NDAtimes Total number of DA update time intervals 
21  17+NMD Comment line   
22  18+NMD DAtimes(i), 

i=1,NDAtimes+1 
DA update times 

23  19+NMD Comment line   
24  20+NMD NPTF Total number of PTFs = the total numbre 

of models in the ensemble 
25  21+NMD Comment line   

26¶  22+NMD PTFid The ID number of PTF function as listed 
in Table 1 of  the CalcPTF code manual 
(Guber and Pachepsky, 2010, this 
website) 

27  22+NMD imodtype 0, van Genuchten-Mualem parameters, 2 
– Brooks-Corey parameters 

28  22+NMD to 
22+NMD+nmat  

thr Residual water content for each of soil 
materials 

29 22+NMD to 
22+NMD+nmat 

ths Saturated water content for each of soil 
materials 

30 22+NMD to 
22+NMD+nmat 

alpha Parameter α in case of van Genuchten-
Mualem model (if imodtype = 0), air 
entry pressure in case of Brooks-Corey 
model (if imodtype  = 2) 

32 22+NMD to 
22+NMD+nmat 

vgn Parameter n in case of van Genuchten-
Mualem model (if imodtype = 0), 
parameter λ in case of Brooks-Corey 
model (if imodtype  =2) 

33 22+NMD to 
22+NMD 

+nmat 

aks Saturated hydraulic conductivity  

34 22+NMD to 
22+NMD 

+nmat 

al Tortuosity parameter 

¶Items 26 through 34 are repeated to provide information for each of NPTF pedotransfer function 
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Table 3.3.  Observation data for each of measurement depths 
Line #† Variable Description 

1 to ntobs tobs Day of the year to the beginning of which 
soil water content data  are available 

1 to ntobs Wnew (i), i=1,nsensors) Soil water contents for all sensors at this 
measurement 

 
Table 3.4. Temporal stability-based sensor bias values for each location and measurement depth 
 

Line #† Variable Description 
1 to NMD Bias  Bias values for all sensors at depths where 

measurements are available 
 
 
Table 3.5. Initial water contents at data assimilation depths 

Line # Variable Description 
1 to 

ndepth 
winit1 Soil water content corresponding to the first 

observation time in the Table 3.3 
 
Table 3.6. Template to build the HYDRUS6 input file ‘Profile.dat’ 

Line # Variable Description 
1 n Number of fixed nodes, set equal to 2 in SSDA 
2  Top fixed node, use values from the test example 
3  Bottom fixed node, use values from the test example 
4 NumNP, 

nnodes 
Total number of nodes 

4 NS Number of solutes, set to 0 
From  5 to  4+nnodes n Node number 
From 5 to  4+nnodes x(n) x-coordinate of the node 
From 5 to  4+nnodes hNew Initial value of the pressure head at node n. An 

arbitrary number in SSDA 
From 5 to  4+nnodes MatNum Soil material at node n 
From 5 to  4+nnodes LayNum Subregion number at node n, set equal to MatNum in 

SSDA 
From 5 to  4+nnodes Beta Value of the water uptake distribution, set equal to 

zero in SSDA 
From 5 to  4+nnodes Ax Nodal value of the pressure head  scaling factor, set 

equal to 1 in SSDA  
From 5 to 4+nnodes Bx Nodal value of the hydraulic conductivity scaling 

factor, set equal to 1 in SSDA 
From 5 to 4+nnodes Dx Nodal value of the watder content scaling factor, set 

equal to 1 in SSDA 
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Table 3.7. Template to build the HYDRUS6 input file ‘Atmosph.in’. 
Line # Variable Description 
1 Comment line  
2 Comment line  
3  MaxAL Total number of days when precipitation, 

evaporation and transpiration data are available. 
4 Comment line  
5 hCritS Maximum allowed pressure head on soil surface 
6 Comment line  
From 7 to 6+MaxAL tAtm Day of the year, is used as the first day in 

simulations 
From 7 to 6+MaxAL Prec Daily precipitation  
From 7 to 6+MaxAL rSoil Daily surface evaporation   
From 7 to 6+MaxAL rR Potential daily transpiration  
From 7 to 6+MaxAL hCA Absolute value of the minimum pressure head 

on soil surface  
From 7 to 6+MaxAL rB Daily bottom flux (set equal to zero if KodBot is 

positive, or if one of logical variables qGWLF, 
FreeD or SeepF is “true”, see settings in the 
'Selector_template.in' file), 

From 7 to 6+MaxAL hB Groundwater level, or any other prescribed 
pressure head boundary condition as indicated 
by a positive value of KodBot (set equal to 0 if 
KodBot is negative, or if one of the logical 
variables qGWLF, FreeD or SeepF is “true”., 
see settings in the 'Selector_template.in' file) 

From 7 to 6+MaxAL hT Prescribed pressure head at the surface (set 
equal to 0 if KodBot is negative, see settings in 
the 'Selector_template.in' file) 

From 7 to 6+MaxAL tTop  Temperature on the surface¶ 
From 7 to 6+MaxAL tBot Temperature at the bottom of the soil profile¶ 
From 7 to 6+MaxAL Ampl Amplitude of temperature fluctuations ¶ 
From 7 to 6+MaxAL cT Concentration at the surface ¶ 
From 7 to 6+MaxAL cB Concentration at the bottom¶ 
 
Table 3.8.  Template to build the HYDRUS6 input file ‘Selector.in’. 
Line # Variable Description 
1 Comment line  
2 Comment line  
3 Hed Heading 
4 Comment line  
5 LUnit Length unit (e.g., 'cm'). 
6 TUnit Time unit (e.g., 'min'). 
7 MUnit Mass unit for concentration (e.g., 'g', 'mol', '-'). 
¶Set equal to zero in SSDA applications 
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Table 3. 7. (Continued) 

Line # Variable Description 
8 Comment line  
9 lWat Set this logical variable equal to .true. when transient 

water flow is considered. Set this logical variable equal 
to .false. when initial condition is to be kept constant 
during the simulation. 

9 lChem Set this logical variable equal to .true. if solute transport 
is to be considered. 

9 lTemp Set this logical variable equal to .true. if heat transport 
is to be considered. 

9 lSink Set this logical variable equal to .true. if water 
extraction from the root zone occurs. 

9 lRoot Set this logical variable equal to .true. if root growth is 
to be considered. 

9 lShort .true. if information is to be printed only at preselected 
times, but not at each time step,  .false. if information is 
to be printed at each time step. 

9 lWDep .true. if hydraulic properties are to be considered as 
temperature dependent, false. otherwise 

9 lScreen .true. if information is to be printed on the screen during 
code execution. 

9 AtmInf .true.   if   variable   boundary   conditions   are   
supplied   via   the   input   file ATMOSPH.IN, .false. if 
the file ATMOSPH.IN is not provided (i.e., in case of 
time independent boundary conditions). 

9 lEquil .true.  if  equilibrium  or  no  adsorption  is  considered  
in  the  solute  transport equation, .false. if 
nonequilibrium adsorption is considered for at least one 
solute species. 

9 lInverse .true. if inverse problem is to be solved, .false. if direct 
problem is to be solved. 

10 - Comment line. 
11 NMat, 

MatNum 
Number of soil materials 

11 Nlay Number of subregions 
11 CosAlpha Cosine of the angle between the vertical line and the 

water flow 
12 Comment line Comment line 
13 Comment line  
14 MaxIt Maximum number of iterations allowed during any time 

step (usually 20). 
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Table 3.7. (continued) 
Line # Variable Description 
14 TolTh Absolute water content tolerance for nodes in the 

unsaturated part of the flow region  (its recommended 
value is 0.0001). TolTh represents the maximum desired 
absolute change in the value of the water content 
between two successive iterations during a particular 
time step. 

14 TolH Absolute pressure head tolerance for nodes in the 
saturated part of the flow region (its recommended value 
is 0.1 cm). TolH represents the maximum desired 
absolute change in the value of the pressure head 
between two successive iterations during a particular 
time step. 

15 Comment line  
16 TopInf .true. if time dependent boundary condition is to be 

imposed at the top of the profile; data are supplied via 
input file ATMOSPH.IN, .false. in the case of time 
independent surface boundary conditions. 

16 WLayer Set equal to .true. if water can accumulate at the surface 
with zero surface runoff. 

16 KodTop Code specifying type of boundary condition (BC) for 
water flow at the surface. Code number is positive for 
Dirichlet BC and negative for Neumann BC. In the case 
of 'Atmospheric BC' set KodTop=-1. Set KodTop=0 
when a prescribed BC can change from Dirichlet BC to 
Neumann BC and vice versa. 

16 lInitW Set equal to .true. if the initial condition is given in 
terms of the water content. Set equal to .false. if the 
initial condition is given in terms of the pressure head 

17 Comment line  
18 BotInf .true. if time dependent boundary condition is to be 

imposed at the bottom of the profile; control data are 
supplied via input file ATMOSPH.IN, .false. in the case 
of time independent bottom boundary conditions. 

18 qGWLF Set equal to .true. if the discharge-groundwater level 
relationship is applied as bottom boundary condition. 

18 FreeD .true. if free drainage is to be considered as bottom 
boundary condition. 

18 SeepF .true. if seepage face is to be considered as the bottom 
boundary condition. 

18 KodBot Code specifying type of boundary condition for water 
flow at the bottom of the profile. Code number is 
positive for a Dirichlet BC and negative for a Neumann 
BC. In case of a seepage face or free drainage BC set 
KodBot=-1. 
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Table 3.7. (Continued) 
Line # Variable Description 
18 DrainF .true. if flow to horizontal drains is considered as 

bottom boundary condition. 
19 Comment line  
20 hTab1 Absolute value of the upper limit of the pressure head 

interval below which a table of hydraulic properties will 
be generated internally for each material (hTab1 must be 
greater than 0.0; e.g. 0.001 cm)  

20 hTabN                  Absolute value of the lower limit of the pressure head 
interval above which a table of hydraulic properties will 
be generated internally for each material (hTabN must 
be fairly large, e.g. 100000 cm)  

21 Comment line  
22 iModel Soil hydraulic properties model ID. This entry is not 

used in SSDA application, it s read a imodtype from the 
Input.dat file 

22 iHyst Hysteresis in the soil hydraulic properties. Set to zero in 
the current SSDA applications, = 0; No hysteresis 

23 Comment line  
From 24 to 
23+nMat 

Par(1,M) Residual water content for soil material M=Line number 
-23 

From 24 to 
23+nMat 

Par(2,M) Saturated water content for soil material M=Line 
number -23 

From 24 to 
23+nMat 

Par(3,M) Parameter α in case of van Genuchten-Mualem model 
(if imodtype = 0) , air entry pressure in case of Brooks-
Corey model (if imodtype  = 2); for soil material 
M=Line number -23 

From 24 to 
23+nMat 

Par(4,M) Parameter n in case of van Genuchten-Mualem model 
(if imodtype = 0) , parameter λ in case of Brooks-Corey 
model (if imodtype  =2); for soil material M=Line 
number -23 

From 24 to 
23+nMat 

Par(5,M) Saturated hydraulic conductivity for soil material 
M=Line number -23 

From 24 to 
23+nMat 

Par(6,M) Tortuosity parameter for soil material M=Line number -
23 

24+NMat Comment line  
25+NMat Comment line  
26+NMat dt Initial  time  increment,  dt.  Initial  time  step  should  

be  estimated  in dependence on the problem being 
solved. For problems with high-pressure gradients (e.g. 
infiltration into an initially dry soil), dt should be 
relatively small 

26+NMat dtMin Minimum permitted time increment 
26+NMat dtMax Maximum permitted time increment 
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Table 3.7. (continued) 

Line # Variable Description 
26+NMat dMul If the number of required iterations at a particular time 

step is less than or equal to ItMin, then dt for the next 
time step is multiplied by a dimensionless number dMul 
≥ 1.0 (its value is recommended not to exceed 1.3). 

26+NMat dMul2 If the number of required iterations at a particular time 
step is greater than or equal to ItMax, then dt for the 
next time step is multiplied by dMul2 ≤ 1.0 (e.g. 0.33). 

26+NMat ItMin If the number of required iterations at a particular time 
step is less than or equal to ItMin, then dt for the next 
time step is multiplied by a dimensionless number dMul 
≥ 1.0 (its value is recommended not to exceed 1.3). 

26+NMat ItMax If the number of required iterations at a particular time 
step is greater than or equal to ItMax, then dt for the 
next time step is multiplied by dMul2 ≤ 1.0 (e.g. 0.33). 

26+NMat MPL Number  of  specified  print-times  at  which  detailed  
information  about  the pressure head, water content, 
flux, temperature, concentrations, and the water and 
solute balances will be printed 

28+NMat tInit Initial time of the simulation, make sure it is the same or 
larger than the first time in the Atmosph.in file if 
atmospheric boundary conditions are imposed 

28+NMat tMax Final time of the simulation, make sure it is the same or 
smaller than the last time in the Atmosph.in file if 
atmospheric boundary conditions are imposed 

29+NMat - Comment line. 
29+NMat TPrint(i), 

i=1,MPL 
HYDRUS6 print times 

 

3.3 Output Files 
SSDA creates two groups of output files – data assimilation output files and HYDRUS6 

output files. The data assimilation files are described below. Descriptions of HYDRUS6 output 

files A_LEVEL.OUT, BALANCE.OUT, I_CHECK.OUT, NOD_INF.OUT, OBS_NODE.OUT 

PROFILE.OUT, RUN_INF.OUT, and T_LEVEL.OUT. can be found in the HYDRUS6 manual 

(Simunek e al., 1998). 

Simulation results for each data assimilation depth for each time step are printed to files 

sim_**.txt where ** stands for the number of PTF used in the order set in the Input.dat file. 

Measured water contents are provided for the beginning of each day in files wout_obs***.txt 

where *** stands for depth in cm. Simulated water contents are provided for the beginning of 
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each day in files wout_sum***.txt where *** stands for depth in cm. Note that measured water 

contents are given for measurement depths, and simulated water contents are given data 

assimilation depths. 

 

4. Sample Problem 

 The sample problem was selected to apply the DA code to research how effective 

assimilation of soil water content sensor data can be in correcting simulated soil water content 

profiles in field soils. The ensemble of models was developed with six pedotransfer functions 

(PTFs) for water retention and four PTFs for the saturated hydraulic conductivity (Ksat). The 

included example refers to data assimilation from three depths.  

4.1 Soil Water Content Monitoring Data 

 The experimental setup and soil water content data have been previously described by 

Jacques (2000) and Pachepsky et al. (2005). In brief, the experimental field was located at 

Bekkevoort, Belgium. It was situated at the bottom of a gentle slope and was covered with a 

meadow. The soil was classified as Eutric Regosol (FAO, 1975). A trench, 1.2 m deep and 8 m 

long, was dug at the field site. The grass cover was removed from the experimental area. A 

plastic sheet to isolate the disturbed trench zone covered one side of the trench. Volumetric water 

content was measured with time domain reflectometry (TDR). Sixty two-rod TDR probes (25 cm 

long, 0.5 cm rod diameter, 2.5 cm rod spacing) were installed along the 5.5 m of the trench at 12 

locations each 50 cm at 5 depths of 15, 35, 55, 75, and 95 cm (Fig. 1). Soil texture and organic 

matter content were measured in samples taken where the probes were installed. Grain-size 

analyses of the sand samples have been performed according to the European standard EN 933-

1. Soil texture was sandy loam at depths of 15 cm, 35 cm, and 55 cm, and loam at depths of 75 

cm and 95 cm. One measurement cycle for all TDR-probes took approximately 35 minutes, and 

the time difference between two measurements for the same probe was 2 hours. After all devices 

were installed, the trench was filled. Rainfall was continuously measured at the site with a 

rainfall recorder (200 cm2) with a floated pen system on a paper (0.1 mm interval, rotation speed 

1 cm h-1). Other meteorological parameters were obtained from the station 3 km from the site. A 

thin layer of gravel (1 to 2 cm) was evenly distributed on the study area. Field measurements 
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started on March 11, 1998 (day 0) and finished on March 31, 1999 (day 384). The site-specific 

TDR calibration (Jacques, 2000) was used. 

 
 
Fig. 1. Time domain reflectometry probe placement (•) at the trench wall. Locations one through 
12 denote twelve positions along the trench where sets of 5 sensors – one for each measurement 
depths were installed.  Filled rectangles show Ap, C1, and C2 horizons top to bottom. Dashed 
lines show the average position of the horizon boundary, and white bands show the observed 
range of horizon boundary depths. Average values of clay, silt, and sand content are given for the 
probe installation depths. Adopted from (Pachepsky et al. 2005) 
 

4.2 Soil Water Flow Model Setup 

 Hydrus-1D software was used to simulate the soil water flow in the site. The atmospheric 

boundary with daily rainfall and evapotranspiration was set as the top boundary condition, and 

the free drainage boundary condition was set as the bottom boundary condition. The pressure 

head profile calculated from measured soil water content based on the van Genuchten equation 

was set as the initial condition. Predicted and updated state variables were water contents at five 

measurement depths averaged across the 12 observation locations at the beginning of the day of 

update. 
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4.3 Ensemble of Models Built with Pedotransfer Functions 

Pedotransfer functions developed from large databases were used to generate parameters 

in the van Genuchten-Mualem parameterization of soil hydraulic properties in variably saturated 

soils (Eqs.12 and 13). Parameters of the water retention function (Eq.12) were found from the six 

pedotransfer functions (Table 4.1) developed from the European continental data base HYPRES 

(Wösten et al., 1999), subsets of the US nationwide database (Gupta and Larson, 1979; Rawls et 

al., 1983), the nationwide Brazilian dataset (Tomasella and Hodnett, 1998), and the large 

national Hungarian database in which sandy loam and loam soils were well represented (Rajkai 

and Varallyay, 1992). The pedotransfer equations of water retention parameters are described in 

details in Guber and Pachepsky (2010).  

Four sets of Ksat values were used to create ensembles of models in this sample problem 

(Table 4.2). The Ksat values were estimated (a) based on textural class and bulk density according 

to the table developed from a large US nationwide database (Rawls et al., 1998), (b) as the 

average values of Ksat found from three large databases (Schaap and Leij, 1998), (c) from clay 

and sand contents with regression equations developed from a large dataset of Soil Conservation 

Service (SCS) Soil Survey Information Reports (Carsel and Parrish, 1988), and (d) from fitting 

the van Genuchten-Mualem equation to geometric mean water contents developed using the 

European continental database HYPRES (Wösten et al., 1999). The ensemble of 24 models (6 

PTFs of water retention × 4 Ksat PTFs) was applied in soil moisture data assimilation with EnKF.  
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Table 4.1. Soil water retention PTFs with estimated van Genuchten parameters. 
 

             PTFs 
 
 
Parameter 

Wösten 
et al. 

(1999) 

Wösten 
et al. 

(1999) 

Tomasella 
and 

Hodnett 
(1998) 

Gupta and 
Larson 
(1979) 

Rajkai and 
Varallyay 

(1992) 

Rawls  
et al. 

(1983) 

 
Model 

VG¶ VG¶ WH→VG§ WH→VG§ WH→VG§ WH→VG§ 

Clay (%) +   + + + 
Silt (%) + + + +  + 

Sand (%) + + + + + + 
OC (%)  + + + + + 

BD (gcm-3)  +  + + + 
 

VG  
α 

(1/m) 

15cm 0.0249 0.0436 0.1705 0.0281 0.0084 0.0532 
35cm 0.0314 0.0404 0.1118 0.0405 0.0064 0.0477 
55cm 0.0314 0.0450 0.1034 0.0488 0.0061 0.0527 
75cm 0.0314 0.0394 0.0734 0.0353 0.0059 0.0394 
95cm 0.0314 0.0280 0.0515 0.0192 0.0062 0.0300 

 
VG 
n 

15cm 1.1689 1.2214 1.2097 1.4158 1.1827 1.2916 
35cm 1.1804 1.2537 1.2173 1.3566 1.1672 1.3455 
55cm 1.1804 1.2593 1.2339 1.3385 1.1820 1.3567 
75cm 1.1804 1.2376 1.2318 1.3188 1.1214 1.3474 
95cm 1.1804 1.2548 1.2259 1.3680 1.0737 1.3539 

 
¶Parameters of the van Genuchten equation are estimated with the pedotransfer function 
§Water contents at specific pressure heads are estimated, and then the van Genuchten equation is 
fitted to the estimates. 
 
 
Table 4.2. Saturated hydraulic conductivity from literature PTFs. 
 

 
 
 
 
 
 

 

No. Reference Saturated Hydraulic Conductivity (cm d-1) 
Sandy Loam Loam 

1 Rawls, et al. (1998) 55.0 12.5 

2 Schaap and Leij (1998) 38.0 12.0 

3 Carsel and Parrish (1988) 106.0 25.0 

4 Wösten et al. (1999) 12.1 10.8 
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4.4 Data Assimilation Results 

 The developed DA code was used to simulate the soil water content profile between Day 

100 (April 10, 1998) and Day 247 (September 4, 1998). Selected data assimilation results are 

shown in Fig. 2. Data assimilation provided an excellent update of weekly simulation results 

when the data from all depths were assimilated (Fig. 2a). Inspection of graphs in Figs. 2b and 2c 

shows that assimilation of measurements from the depth of 15 cm resulted in the same accuracy 

as assimilation of data from all depths and assimilation of measurements from the depth of 95 cm 

resulted in relatively large errors in the top of the profile. While the update was satisfactory, the 

simulations between update times deviated from measurements since parameters of the model 

were not changed. 

 Results of daily data assimilation are shown in Fig. 3. The daily update prevents the 

development of the simulation bias that has been well pronounced with weekly updates (Fig. 2). 

Using the data from only one depth corrects results throughout the profile in case of daily 

updates as in a case of less frequent updates. However, utilizing more than one sensor seems to 

be beneficial, since the use of only one sensor from the 15-cm depth leads to the exaggeration of 

water content dynamics at larger depths (Fig. 3b), and the use of the sensor from the 90-cm depth 

does not properly correct the simulated dynamics at 15 cm and 35 cm depths. The RMSE values 

for daily assimilation are substantially – up to 12 times - less than in the case of weekly 

simulations. The best overall result has been achieved when all 5 sensors have been used.  The 

next best overall results have been obtained with pairs of sensors from 15 cm and 55 cm, and 

from 35 cm and 95 cm. 
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Fig. 2. Selected results of weekly ensemble simulations update; (a) update with assimilation of 
data from sensors from all five depths, (b) update with assimilation of data from sensors at the 
15-cm depth, and (c) update with assimilation of data from the sensors at the 95-cm depth. 
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Fig. 3. Selected results of daily ensemble simulations update; (a) update with assimilation of data 
from sensors from all five depths, (b) update with assimilation of data from sensors at the 15-cm 
depth, and (c) update with assimilation of data from the sensors at the 95-cm depth.  
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5. Conclusions 

 This manual outlines the code that combines the ensemble Kalman filter-based data 

assimilation  with the developments in pedotransfer functions, temporal stability of soil water 

patterns, and soil water content sensors.  The code was developed to facilitate improvements in 

modeling results in soil hydrology and related fields. The sample problems demonstrates that 

assimilation of soil water content sensor data appears to be effective in correcting soil water 

content profiles simulated with the Richards equation based model; small number of sensors was 

sufficient to correct the simulated profile. The developed code can also be applied into the 

modeling accuracy improvement in various hydrology-related fields.  
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