
P-values and related concepts, part 2

Matt Kramer
NEA Statistics Group

matt.kramer@ars.usda.gov
301.504.8121

mailto:matt.kramer@ars.usda.gov


Recap of Part 1

● p-values were developed ad-hoc
● It is the probability of getting results at least as 

extreme as the ones you observed, given that the 
null hypothesis is correct 

● Not a measure of the strength of an effect or 
relationship

● Gives the signal/noise ratio as a single value
● Confidence intervals are more informative



Outline for Part 2

● Power
● Effect size
● Variance decomposition
● Exploratory and confirmatory research and 

multiple comparisons
● Multiple dependent variables
● Conclusions



p-values and power

If there are true differences among treatments or among 
slopes of regression lines, a more powerful design for 
the same sample size will produce lower p-values.

● A power analysis will tell you (a) how large a difference 
among treatments is detectable, given (b) sample size 
and (c) estimates of the random effects parameters (e.g. 
residual variance, block-to-block variance).

● If you know (a) and (c), a power analysis can find (b) 
sample size needed. This is a common use of power 
analysis.



How to do a power analysis

● For t-tests, the simplest way is explained in Festing, MFW. 2018. On 
determining sample size in experiments involving laboratory animals.  
Laboratory Animals: https://doi.org/10.1177/0023677217738268.  

● For all fixed effects models (ANOVA, regression), there is readily available 
software (SAS, R, etc.) as well as websites to do the calculation, see:

http://psych.wisc.edu/henriques/power.html  
http://www.datavis.ca/online/power/

● For models with random effects, it is more difficult; you either need to set 
up an exemplary data set (see Stroup, W.W. 2012. Generalized Linear 
Mixed Models: Modern Concepts, Methods and Applications, CRC Press 
for details and how to do subsequent calculations) or use simulation 
(setting up many example data sets and seeing how many give you p < 
0.05).

http://psych.wisc.edu/henriques/power.html


Effect Size
● One idea closely linked with p-values (and power) is effect size, how the large the difference is 

between treatments, relative to other sources of variation.

● If the effect size is large, it will be easy to separate the treatments; p-values (both a priori and a 
posteriori) will be small (i.e. the treatment effect is significant).

● If the effect size is small, it will be difficult to find a treatment effect without a large sample size.



Calculating and reporting effect size

● Effect size for the difference between two means is 
calculated as 

Cohen’s d = (X1 – X2)/Sp, 

where Sp is the pooled standard

 deviation.

Effect sizes: small: d = 0.2; medium: d = 0.5; large: d = 0.8 
● Some journals are now recommending reporting effect 

size.



Variance decomposition

● A potentially superior way to impart how much of 
the variability in the data set is attributable to the 
treatment effect is to perform a variance 
decomposition.

● This is especially useful when there are many 
potential independent variables affecting samples, 
e.g., fixed and random effects and their interactions.

● If the model also includes quantitative variables, 
they can be binned into levels of qualitative factors.



Example variance decomposition 
table

Source of variation variance percent

Factor 1 140.5 8

Factor 2 158.0 9

Covariate 210.7 12

Block-to-block 316.1 18

Residual 930.1 53

Total 1755.4 100



Exploratory or Confirmatory 
Research and Multiple Comparisons
● JW Tukey: “Finding the question is often more 

important than finding the answer.”
● Whether a project is in an exploratory phase (e.g., 

which bio-engineered cultivars produce reasonable 
yields in non-irrigated mid-west farms?) or a 
confirmatory phase (e.g., do three new cultivars 
outperform the traditional one?) should dictate the 
kinds of statistics used.

● In particular, the balance between type I and type II 
error changes.





Exploratory Research

● Controlling type II error is more important 
● More concern about saying that a finding is not 

important when in truth it is (and conversely, less 
concern saying that a finding is important when it isn’t)

● In a paper, explain that the research is exploratory in 
nature and use that to justify multiple comparisons 
methodologies that do not control type I error rates 
(e.g. Duncan’s―and this is the only circumstance this 
method should be used).



Confirmatory Research

● Controlling type I error rate is more important
● More concern about establishing ‘proof’ that 

something is true
● Most published research is assumed to be 

confirmatory, so multiple comparisons should 
be made with good type I error control



Multiple Comparisons for 
Confirmatory Research

● Your factor has more than two levels and you want to know which 
levels differ.  These are not a priori comparisons.

● You can not make these tests at α = 0.05 because you are testing 
subsets of the data that were previously tested.  This increases the 
probability of falsely rejecting hypotheses of no difference.

● To control for this, one must adjust α; there are many acceptable 
techniques.



False discovery rate

● Another approach; instead of controlling for the probability of at 
least one error (family-wise error rate), one controls for the 
expected proportion of errors (false discoveries).

● This is a useful idea when hundreds or thousands of tests are 
made, as is common in genomics; controlling for family-wise 
error rate would be prohibitively conservative.



Example using Benjamini-Hochberg 
for an experiment with 100 p-values



Multiple dependent variables

● You did an experiment where several characteristics were measured on each sample.

● For example, on each plant you measured: approximate number of mature leaves on 
last 30 cm of terminal (or longest) branch, leaf area of the youngest five mature leaves 
on the terminal shoot, stem diameter at base, plant height, plant width (average of 
largest and smallest measure of ellipsoid created from plant shadow at noon), number 
of flowers, average size of five flowers (maximum diameter), flower quality (score of 0 – 
5), and health (score of 0 – 5).

● There is some overlying treatment structure (e.g. varieties, growth conditions, origin) 
and design structure (e.g. location, blocking, greenhouse).



These variables have different properties (distributions).  

Quantitative (but not necessarily normally distributed)
Leaf area
Stem diameter
Height
Width
Flower size

Categorical (or ordered categorical)
Flower quality
Plant health

Count
Number mature leaves
Number of flowers

Some of these variables are positively correlated with others, e.g. plant height, 
plant width, stem diameter, health, number of flowers; others possibly negatively
correlated, e.g. number of flowers and flower quality.

They may be on different scales, e.g. height (cm), leaf area (cm2), or unknown
or poorly defined scales (flower quality).



Multiple dependent variables

● DO NOT analyze each dependent variable 
separately without taking into account that you are 
in a repeated measures scenario.

● DO NOT test each dependent variable at α = 0.05.
● The different characteristics are correlated through 

the individual plants; they are not independent. For 
them to be independent, each characteristic would 
have to be measured on a different set of plants.



Approaches

● Under a fairly restrictive set of conditions, MANOVA may 
be useful (e.g., no random effects, all variables are 
approx. normally distributed, the same independent 
variables explain all the DVs). This will correctly adjust 
testing and p-values for the multiple dependent variables.

● Dimension reduction methods to reduce the number of 
dependent variables. Note that several of the variables 
are related to “size”. This might be captured in the first 
dimension of a PCA. Rescale variables to the same scale 
if possible (e.g., take the square root of area measures).  
Transformations may also be useful.



Approaches (2)

● For ordered or categorical data, perhaps the 
number of categories can be reduced, e.g., a 
plant can be diseased or not diseased; flowers 
can be of high or low quality.

● If each variable is modeled independently, there 
must be experiment-wise error control. The p-
values need to be adjusted using an acceptable 
method, e.g., multiple comparisons or FDR.



Conclusions

There are better, though not as universally 
acceptable, ways to demonstrate the importance of 
research results than p-values, e.g., effect size, 
variance decomposition.

In the face of repeated measures, multiple 
comparisons, etc., unadjusted p-values can 
incorrectly inflate the number of “significant” 
differences.  The balance between type I and type II 
error can be used to decide what kind of statistical 
adjustment (if any) should be made to p-values.


